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Abstract

A new frequency-domain system identification algorithm is presented

for system identification of substructures, such as payloads to be flown aboard

the Space Shuttle. In the vibration test, all interface degrees of freedom where

the substructure is connected to the carrier structure are either subjected to

active excitation or are supported by a test stand with the reaction forces

measured. The measured frequency-response data is used to obtain a linear,

viscous-damped model with all interface-degree of freedom entries included.

This model can then be used to validate analytical substructure models. This

procedure makes it possible to obtain not only the fixed-interface modal data

associated with a Craig-Bampton substructure model, but also the data associ-

ated with constraint modes. With this proposed algorithm, multiple-boundary-

condition tests are not required, and test-stand dynamics is accounted for

without requiring a separate modal test or finite element modeling of the test

stand. Numerical simulations are used in examining the algorithm's ability

to estimate valid reduced-order structural models. The algorithm's perfor-

mance when frequency-response data covering narrow and broad frequency

bandwidths is used as input is explored. It's performance when noise is added

to the frequency-response data and the use of different least squares solution

techniques are also examined. The identified reduced-order models are also

compared for accuracy with other test-analysis models and a formulation for a

Craig-Bampton test-analysis model is also presented.
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Chapter 1

Introduction

The dynamic behavior of complex engineering structures can be pre-

dicted by using various analytical and numerical methods, with the most pop-

ular method being the finite element method. A finite element model (FEM)

is an approximation of a continuous structure, and assumptions are made in

the development of the FEM concerning the distribution of mass and stiffness,

approximation of boundary conditions, estimation of material properties, and

so forth. As a result, the FEM may or may not accurately represent the original

structure. Before this mathematical model can be used to perform any sort of

analysis and the results used with confidence, the model must be test-validated

to ensure that it accurately represents the physical structure. Thus, there ex-

ists the need to be able to characterize the dynamic behavior of structures

experimentally.

For some structures, performing a vibration test on the entire struc-

ture is usually not feasible or practical due to the size and complexity of the

structure. To facilitate testing, the original structure is divided into smaller,

more manageable components, referred to as substructures. Component mode

synthesis, or substructuring, techniques are generally employed to analyze the

individual components and couple them together to form an analytical model

of the original structure [1, 2]. For example, the Space Shuttle Orbiter, pay-
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load, external tank, and solid rocketboostersareeachsubstructureswhich can

be analyzedindividually and coupledtogether to form the final launchvehicle

model.

To verify an individual substructuremodel, a modal test is performed

to identify the modal parametersof the actual substructure. The modal pa-

rametersof interest arethe natural frequencies,dampingfactors,natural mode

shapes, and the residual massand stiffness. Since the natural frequencies

are scalar quantities, they can be readily compared. The comparison of the

mode shapes is not as straightforward and involves orthogonality and cross-

orthogonality checks using the experimental mode shapes and test-analysis

models.

When the vibration test is performed, the boundary conditions should

be representative of those experienced during actual flight conditions. It is im-

portant that that the correct boundary conditions be provided at the substruc-

ture interface locations in order to obtain accurate results. For Space Shuttle

payloads, this has sometimes led to fixed-base modal tests being performed to

verify the analytical substructure model. The difficulty with this test method

is that it requires the interface locations to have zero translational and rota-

tional displacement. In actual test conditions, this situation is very difficult

to achieve, since the test stand used to support the test article is rarely rigid

enough and the dynamics of the test stand must be considered.

Therefore, to eliminate these problems, a new test method and al-

gorithm called the Substructure System Identification (SSID) algorithm has

been developed to identify substructures and verify analytical substructure



models [3,4]. In the vibration test, all interface degreesof freedomare either

actively excitedby a shakeror connectedto a test standwith the reaction forces

measured.The results canbeusedto obtain a linear, viscous-dampedmodelof

the substructure. The purposeof this investigation was to verify the proposed

algorithm's ability to identify valid structural models. Numerical simulations

were usedto simulate test data, and the algorithm's performancewhen noise

wasadded to the test data, and the effectsof spatial and frequencytruncation,

wereexamined.

Chapter 2 reviewspertinent test methodsand structural systemiden-

tification algorithms. In Chapter 3, the theory of the Substructure System

Identification algorithm is discussed.Model reductionand varioustest-analysis

models usedto aid in the comparisonbetweenthe test and analytical results

are discussedin Chapter 4. Chapter 5 highlights someof the computational

aspectsof the SSID algorithm that affect the final solution, such as different

methods for solving an over-determinedsystemof linear equations. In Chap-

ter 6, the results of various numerical simulations using the SSID algorithm

are presentedand analyzed. Finally, in Chapter 7, conclusionsare drawn and

recommendationsfor future researchareproposed.



Chapter 2

Review of Literature

Reviews of previous test methods and structural system identifica-

tion algorithms that are relevant to this work are given in this chapter. Test

verification methods are discussed in Section 2.1. Section 2.2 reviews several

different time-domain and frequency-domain structural system identification

algorithms.

2.1 Test Verification of Analytical Substructure Mod-

els

2.1.1 Test Verification of Finite Element Structural Models

The response of complex structures subjected to dynamic loading has

been a subject of interest for many decades. The finite element method is

usually employed to facilitate the analysis of the structure. A finite element

model of the continuous structure is created by discretizing it to N finite degrees

of freedom (DOF). The resulting second-order differential equations of motion

for a linear time-invariant model can be written in the form

MrS(t) + Cx(t) + Kx(t) = Of(t) (2.1)

where M, C, and K are respectively the mass, damping, and stiffness matrices

of the system, x(t) is the time-dependent coordinate vector, D is the force-

distribution matrix, and f(t) is the time-varying applied force. Based on the
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following physical assumptionsabout the structure, the system matrices are

assumedto be positive definite or semidefinite: 1) all degreesof freedomhave

inertia, sothe systemkinetic energyis strictly positive and the massmatrix is

positive definite, 2) for any forcedmotion, the systemdoesnot createenergy,so

the dampingmatrix is positive semidefinite,and 3) the strain energy is always

positive, so the stiffnessmatrix is positive semidefinite.

The FEM must provide a physically significant representationof the

physical structure. However,assumptionsare madein the developmentof the

FEM, and much expertise is required in order to obtain reliable and valid

results. The initial FEM must be experimentally validated before it can be

usedto predict the responseof the structure.

An experimentalmodelcanbeobtainedusingoneof the identification

algorithms described in the next section. Then, a comparison between the

experimentalmodeland an analytical test-analysismodel (TAM) ismadein an

attempt to verify the math model. Test-analysismodels arediscussedfurther

in Chapter 4.

The analytical model is deemedto be a good representationof the

physical structure if there is good agreementbetween the measuredand an-

alytically computed modal parameters. Generally, if the identified natural

frequencies are within 10%, and an orthogonality check of the test modes with

respect to a TAM mass matrix is satisfied, the math model is considered "test-

verified." Acceptable orthogonality results are characterized by values of all of

the off-diagonal terms being less than 0.1 when the diagonal values are normal-

ized to unity [5]. The test data is generally considered to be correct, therefore
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any discrepanciesbetweenthe analytical and the measuredmodal parameters

are attributed to the math model.

Numerousproceduresexist for updating the fmite elementmodel to

match the experimental data. There are two general approachesfor model

updating. One approach is to modify the entire matrices, and the other is

to update only individual elementswithin the matrices [6, 7]. The analytical

massmatrix is generallyconsideredto be a good estimationof the structure's

masscharacteristics,somany updating techniquesfocus on updating only the

stiffness matrix. There also exist numerous methodologies that update the

analytical model so as to minimize the difference between the analytical and

experimental frequency response functions [8].

2.1.2 Space Shuttle Payload Model Verification Tests

A coupled-loads analysis for lift-off and landing events must be per-

formed for any payload that will fly aboard the Space Shuttle. The mathe-

matical model used to perform the coupled-loads analysis must be in the form

of Craig-Bampton modes or mass and stiffness matrices [9]. Before using the

math model in the coupled-loads analysis, the math model must be test-verified

by correlating it with modal test data.

Test-verification of math models has traditionally been accomplished

by performing a modal test on the payload with the interface degree of freedom

constrained. For a proper validation, the boundary conditions imposed during

the test should match those in service, which has led to the use of fixed-base

testing as a common approaz_h used to verify the constrained math models.



Thereare two different attachmentconfigurationsthat may beused,depending

on the size of the payload. Larger payloads are supported by four lateral

trunions and akeeltrunion. Figure 2.1 illustrates the payload-orbiterboundary

conditions for larger payloads. Shorter payloadsaresupported by two lateral

trunions and a singlekeel tnmion. Ideally, the trunions are restrained in only

one or two translational degreesof freedomwith all other degrees of freedom

flee.

. PRIMARY FITTINGS;

/I.EACTLO.a,T.D,..*'

' IrrAJtlLIZING RTrlNG8:

REACT VI[ItTICAL LOAD (Fz)

Figure 2.1: Payload-Orbiter Boundary Conditions

For payload math models, the Craig-Bampton form is often used. In

order to experimentally verify a Craig-Bampton substructure model, the com-

ponent fixed-interface modes must be validated. Measuring the fixed-interface

modes involves attaching the substructure to a test-stand in a manner such that

the appropriate translational displacements at interface degrees of freedom are
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zero. Therefore,a largeand rigid test-standhasto be constructedand testedto

ensurethat its fundamental frequencyis above the frequency range of interest

of the substructure. This requirement is to ensure that there is no coupling

between the test stand and the test article. Construction of such a test-stand is

usually very expensive. Frequently, the test stand will not be rigid enough and

test-stand dynamics must be accounted for by performing additional modal

tests or finite element analysis of the test-stand. The terms related to the

constraint modes in the Craig-Bampton model are seldom test-verified.

Additional difficulties involved with fixed-base testing make the ap-

proach very difficult and impractical in many cases. Reference [10] describes

some of the difficulties encountered in the fixed-base test of a Space Station

module prototype; mainly that the interface degrees of freedom could not be

properly represented, which introduced nonlinearities into the system at the in-

terfaces. Alternate test methods have been suggested using free-free modal test

data to verify the constrained modes. Since a rigid test-stand is not required,

free-free modal tests are generally less complicated and cheaper to conduct than

a fixed-base modal survey. However, the test is performed in a different con-

straint condition than that used for the coupled-loads analysis, so additional

information must be measured at the constraint degrees of freedom, since free-

free modes alone are not sufficient to validate a constrained model.

A mass-additive technique was used as an alternative to fixed-base

testing to derive constrained modes from free-free modes to verify a Space

Station prototype module and a Space Shuttle payload [11]. Large masses were

added at the interface locations and a superposition of the mass-loaded normal
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modeswasusedto obtain the constrained modes. The additional masses at the

interface locations lowered the frequency of the local "trunion modes" into the

bandwidth of the global modes of the structure. The additional masses also

allowed the interfaces to be exercised more than during a free-free test. This

method was found to work better for structures having well-spaced natural

frequencies than for those with high modal densities, like the Space Station

module. Drawbacks of this method are that a large number of mass-additive

modes are required to derive the fixed-base modes, which increases the difficulty

of the correlation task, and that it may be difficult to determine the proper size

of the interface masses. Reference [12] contains details of the free-free modal

test that was used to obtain the experimental data and also a description of

the problems encountered during the fixed-base modal test of the Space Station

module.

The residual flexibility approach has also been used as a technique

for deriving constrained structural modes from free-free modes supplemented

with residual dynamics information. A successful application of the residual

flexibility approach to test-validate a Space Shuttle payload is given in Ref-

erences [13, 14]. The residual flexibility information was obtained from drive-

point frequency response functions at each of the payload-shuttle interface loca-

tions by subtracting the synthesized response from the measured response. The

payload FEM was then adjusted to match the free-free modes and the residual

flexibility terms. Admire, et al., also used the residual flexibility approach to

verify math models of the Space Station prototype module and a Space Shut-

tle payload [15]. The same approach utilized in Ref. [13] was followed, and

it was shown that the residual flexibility method worked well and was bet-
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ter suited than the mass-additiveapproachfor the SpaceStation module. It

wasconcludedthat the approachcan be usedas an alternative to constrained

boundary testing, but measurement techniques need to be improved to better

measure the required frequency response functions associated with the residual

information.

A technique called Interface Verification Testing has also been used

as an alternative to fixed-base testing for verification of Space Shuttle payload

math models [10, 16, 17]. Free-free data is supplemented with additional data

obtained by exciting a single interface degree of freedom while the structure is

is freely suspended. The additional information that is obtained in this test

provides the residual flexibility and is reflected in the location of the zeros of the

inertance frequency response function. This set of data can be used to verify

the constrained payload math model. The authors also mention the problem of

accurately measuring the residual information, since the residual information

is typically on the order of 1.0 E -6 in./lb, and all of the modal curve fit error

is contained in the residual curve fit.

Recent attempts have also been made to design interface connections

that simulate the payload attachment mechanism. The concept is to have

the test fixture, or flexure, designed to be very stiff in the restrained trunion

degrees of freedom and flexible in the un-restrained degrees of freedom. Chung,

Sernaker, and Peebles [18] suggest that to ensure that the restrained and un-

restrained degrees of freedom do not couple, the axial stiffness should be at least

three orders of magnitude greater than the stiffness in bending directions. The

iiexure should also be designed to transmit the load properly and to minimize
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interaction with the testarticle. Mfihlbauer, Troidl, and Dillinger havedesigned

a flexure using cylindrical rods with flexible sectionsat eachend that act as

elastichingesfor an interfacedegreeof freedom[19]. Onesuchflexure is usedat

eachtnmion interfaceattachmentand theseflexureshavebeenusedfor several

verification testswith goodresults reported.

2.2 Structural System Identification

Structural system identification is the process of using experimentally

acquired data to obtain some sort of useful model of the test article that char-

acterizes the dynamics of the structure. System identification algorithms have

been formulated in both the time domain and the frequency domain, and each

has its own advantages and disadvantages [20]. A comparison and evaluation

of several identification algorithms and the test requirements needed to sat-

isfy the assumptions of each as applied to the Galileo spacecraft is given in

Reference [21].

The most important advantage of time-domain techniques is that

they are generally better conditioned numerically than an equivalent frequency-

domain implementation [22]. This is believed to be due to the power to which

the frequency values are raised in the frequency-domain equations of motion,

which increases the dynamic range of the numerical data. For this reason,

most frequency domain estimation methods generally work better for narrow

frequency band analysis. Frequency-domain algorithms based on orthogonal

polynomials have attempted to alleviate this problem [23]. Frequency-domain

algorithms have the advantage that they can compensate for the effects of out-
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of-band modes, or residual dynamic effects, while time-domain methods cannot

represent residual effects [24].

Experimental models have traditionally been obtained by experimen-

tal modal analysis techniques, which attempt to identify the modal parameters

of the structure, that is, the natural frequencies, damping factors, natural mode

shapes, modal participation factors, and the residual mass and stiffness [5]. The

response of the system is described in terms of a linear superposition of the

characteristic solution of the differential equations. The modal parameters are

then obtained by curve-fitting the measured data.

Another approach to obtain the experimental model is to estimate the

system matrices, that is, to identify the mass, damping, and stiffness matrices

directly from measured system responses. This approach is referred to as Direct

System Parameter Identification (DSPI) [25]. The matrices are estimated di-

rectly from the measured input and output data. An eigenvalue decomposition

of the estimated matrices results in the desired modal parameters.

2.2.1 Time-Domain Identification Algorithms

For time-domain system identification, much effort has recently been

put forth to develop state-space realization procedures. Most notable among

these is the Eigensystem Realization Algorithm (ERA) by Juang and Pappa [26]

and its derivatives [27, 28]. A widely used time-domain identification algorithm

in the modal test community is the Polyreference algorithm [29]. In Ref. [30],

Juang relates the algorithmic properties of the Polyreference algorithm to a

state-space canonical-form realization.
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Since all vibration test data is discrete in nature, all time-domain

linear system realization proceduresbegin with the assumption that a finite

order discrete state-space model of the system exists, and that it is of the form

• (k+l) = Ax(k)+Bu(k)

y(k) = ax(k) + Du(k) (2.2)

where x is the N x 1 state vector, u is the m x 1 input vector, y is the 1 x 1

output vector, A is the N x N state transition matrix, B is the N x m input

influence matrix, C is the l x N output influence matrix, D is the I x m matrix

corresponding to direct input/output feedthrough, and k is the time sample

index. Note that the C and D matrices in Eq. 2.2 are not the same as the ones

in Equation 2.1. The solution for the output y(k) to an arbitrary input u(k) is

given by
k

y(k) = __Y(k- i)u(i) (2.3)
i=0

where Y(i) are the discrete-time impulse response functions, which are referred

to as Markov parameters. The Markov parameters are related to the state-space

matrices by

{ D k = 0 (2.4)Y(k)
CA_-IB k > 0

Given a measurement sequence of Markov parameters, the system realization

problem is to find a minimal-order realization of the state-space matrices that

best approximates the given Markov sequence.

The main problems in system realization axe determination of the

model order and the state-space parameters. The Eigensystem Realization

Algorithm provides a systematic approach for determining a minimal-order
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model of a given accuracy and for determination of the discrete state-space

model. The algorithm usesa discrete-timeshift of the Markov parametersto

form a Hankel matrix, which is defined as

Hqd(k ) =

Y(k + 1) Y(k + 2) .-- Y(k + d)

Y(k + 2) Y(k + 3) ..- Y(k + d + 1)

: : : :

Y(k+q) Y(k+q+l)... Y(k+q+d-1)

(2.5)

where q and d are arbitrary integers. The rank of He(0) is estimated from a

singular value decomposition, and the largest N singular values are selected to

determine the model order. The discrete state-space matrices are formed from

the left and right singular vectors and the He(l) Hankel matrix. Once the

state-space matrices are known, the modal parameters can be extracted.

Su and Juang [31] developed a time-domain algorithm for system

identification at the substructure level. A procedure is presented to determine

and assemble substructure Markov parameters. Using the Markov parame-

ters, substructure transfer functions can be computed and used to determine

substructure state-space models. A procedure is also outlined to couple the

substructure state-space models to obtain an analysis model for the entire as-

sembled structure. The resulting model describes the dynamics of the substruc-

tures when the appropriate interface compatibility and equilibrium conditions

are enforced. The authors note that to enforce compatibility and equilibrium

conditions at the substructure interface locations, co-located sensors and actu-

ators are needed at all of the interface degrees of freedom.

The common basis normalized structural identification (CBSI) pro-

cedure developed by Alvin and Park [32] uses the Eigensystem Realization
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Algorithm, or any other state-space-basedsystem identification technique, as

a precursor to determine a second-orderstructural dynamics model from a

minimal-order discretestate-spacemodel. The authors point out that for the

solution of the system realization problem, there are an infinite number of

equivalentrealizationsfor the givendata. A transformation is developedto de-

termine the underlying physically basedstructural model from the mathemati-

cal state-spaceidentified model. The realizedmodel, after the transformation,

has a one-to-onecorrespondencewith the physical parametersof the system

and canbe usedto determinethe mass,damping,and stiffnessmatrices of the

system.

2.2.2 Frequency-Domain Identification Algorithms

Leuridan, et al., present a frequency-domain DPSI approach that uti-

lizes a straightforward linear estimation to identify the system matrices [25].

Beginning with the frequency-domain equations of motion

{ -w2X(w) }[ M C K] jwX(w) =OF(w) (2.6)

the system matrices are solved for directly. However in its present form, Eq. 2.6

cannot be solved very easily. A technique developed in Ref. [33] is used to

rewrite the matrix of unknowns as a vector and cast Eq. 2.6 in the more familiar

and readily solvable form Ax = b. However, the resulting equations are highly

ill-conditioned, and numerical techniques should be used to minimize the effects

of the ill-conditioning. An advantage of the method is that it uses all of the

measurement data from multiple inputs simultaneously in the identification
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procedure. By doing so, it takes advantage of redundant information in the

data and reduces the influence of measurement noise errors. However, the

authors point out that if the input frequency data does not fit the model or

does not contain enough information to form a complete model, the method

will become unstable and diverge.

One of the earliest algorithms to identify the system matrices relates

the matrices to measured complex modes and frequencies [34]. A similar ap-

proach is also presented by Balm_s [35]. The equations of motion must be

cast in first-order form to include the effects of damping in the ensuing eigen-

problem. Just as in the second-order eigenvalue problem, two orthogonality

conditions result. After some algebraic manipulation and employing the two

orthogonality conditions, the following expressions are arrived at for the mass,

damping, and stiffness matrices:

M = (_A_T) -1, C = -M_A2_TM, and K = --(_A-I_T) -1 (2.7)

where • is the normalized displacement partition of the complex modal ma-

trix, and A is a diagonal matrix of the complex eigenvalues. An expression,

@_T __ 0, referred to as the properness condition, is also presented in the

derivation of Equation 2.7. The properness condition implies that the mea-

sured mode shapes are consistent with measured displacement quantities, and

this constraint must be satisfied in order for the solution of the inverse prob-

lem to be physically consistent in the determination of the mass and stiffness

matrices. The algorithm uses the pole and residue information obtained from

some other algorithm to estimate the complex mode shapes and frequencies.

The scaling of the complex modes is accomplished through information associ-
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ated with a drive-point transfer function. A least-squaresestimation is usedto

minimize the phaseof the complexmode shapessince it is assumedthat the

complexmodesshouldbe mostly real. To enforcethe propernesscondition, a

constraint minimization problem must besolvedfor the final estimation of the

complexmodesbefore the systemmatrices are computed. In the current for-

mulation, this algorithm allowsfor only a singleinput to be usedin the scaling

procedure.However,most vibration testsemploymultiple inputs, so somesort

of yet-to-be-definedaveragingalgorithm of the co-locatedsensorinformation

is required beforethis method can be usedwith multiple-input test data.

A frequency-domaindirect identification algorithm developedby Lem-

bregts [36,37] usesa state-spaceformulation to solvefor systemmatrices. The

equationsof motion arewritten in first order form as

+= +}+[-0`o{+} 0]{+ (2.s)

where .A1 = M -1C, .A_ = M-tK, and D is the force distribution matrix. A

Laplace transformation is used to derive an expression to determine A1 and A2

from the measured frequency response data. The ensuing first-order algebraic

I O][ OA

eigenvalue problem

is then solved to identify the modal parameters. The algorithm does allow for

simultaneous use of multiple input data and also can include terms to compen-

sate for residual effects. Before the identification procedure begins, an optimal

model order is selected and a singular value decomposition is performed on

the measured frequency response data to condense the data to the appropriate
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model order. In order to compensate for noise in the data, measurement error,

and residual effects, the model order is selected to be greater than the number

of physical modes present in the data. In this algorithm, an assumption is

made that the number of observable modes is less than or equal to the num-

ber of output measurement locations. This is a fundamental limitation of this

technique. In test situations, this implies that the frequency band over which

data is being measured must be narrow enough so that there are fewer modes

than output measurements.

Recently, a Unified Matrix Polynomial Approach (UMPA) [38]-[40]

has been developed to show that many modal parameter estimation methods

can be reformulated in a consistent framework. The Unified Matrix Polynomial

Approach is a direct parameter identification method and allows multiple-input

systems. The model is described in the Laplace domain by a rational fraction

polynomial of the form

Ai]s' {X(s)}= Bi]s' {F(s)} (2.10)

where [A_] and [B_] are the unknown UMPA coefficient matrices, n and m are

the model orders of the input and output, and s is the Laplace variable (s = jw).

The coefficient matrices are estimated from the measured input-output data

using a total least squares estimation having the form

jwX(w)
[Ao A, A, Bo] -w'X(w) =0 (2.11)

where A0 = K, A1 - C, A2 = M, and B0 = D. A description of the total

least squares method is given in Chapter 5. Once the coefficient matrices
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are estimated, the modal parametersare estimated by solving the algebraic

eigenvalue problem of Equation 2.9.

Frequently, in structural dynamics testing the number of output mea-

surements is less than the number of modes in the frequency bandwidth over

which the test is being performed. As previously mentioned, some identification

algorithms require that the number of sensors be equal to or greater than the

number of observable modes. To get around this problem of spatial tnmcation,

Alvin, Peterson, and Park [41] developed a method to determine minimal-order

mass and stiffness matrices when the number of observable modes is greater

than the number of available sensors. The resulting minimal-order matrices

express contributions of all modes that are observable from the available sen-

sors. The measured physical degrees of freedom are augmented with a set of

generalized coordinates which possess information about the residual dynamics

of the system. A singular value decomposition of the residual dynamic matrix

is used to determine the rank deficiency of the reduced stiffness, and the re-

quired minimal-rank augmentation is the number of nonzero singular values.

The minimal-order mass and stiffness matrices are formed by augmenting the

mode shapes with the singular vectors. A drawback of this method is that it

assumes that a set of mass-normalized mode shapes can be measured, and it

is these real normal modes that are used to compute the minimal-order mass

and stiffness matrices.

A procedure for identification of modal parameters using both time-

and frequency-domain procedures is described in Reference [24]. The model

order is selected using time-domain procedures, and the modal parameters are
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estimated by using frequency-domain procedures that are able to represent

residual effects. To determine the number of modes present in the data, the

singular values of the frequency response function matrix ace examined and a

modal indicator hmction is also used. The size of the Hankel matrix is selected

by observing the convergence of its singular values while varying the number of

rows and columns of the Hankel matrix. Once the singular values converge and

the size of the Hankel matrix is chosen, the model order is varied from 1/2 to 4

times the number of modes observed in the data. Modal quality indicators are

then used to eliminate poles and to study the convergence of modal frequencies

and damping ratios. The modal vectors are extracted from the converged poles

in a least squares frequency-domain curve fit. The frequency-domain curve fit

includes an improper term as an unknown, which compensates for the fact

that discrete state-space models cannot represent the effect of modes above the

Nyquist frequency. The resulting minimal-order model achieves good accuracy

in both the time domain and the frequency domain.

2.3 Conclusions

This chapter has presented numerous testing methods and structural

system identification algorithms. Each one has its own inherent advantages and

disadvantages. The selection of one method or algorithm over another depends

in large part on the structure under investigation, the purpose for which the

identification is being performed, and on the experience of the structural dy-

namicist. There is an obvious need for a new identification procedure that can

overcome many of the previously discussed shortcomings. One such algorithm

is discussed in the next chapter.



Chapter 3

A Proposed Frequency-Domain Substructure System

Identification Algorithm

The S_ubstructure __vstem Identification (SSID) algorithm is a new

frequency-domain identification method that can be used to obtain a linear

viscous-damped model of a substructure 1. Every interface degree of freedom is

either actively excited by a shaker with the input measured or is supported by

the test stand with the reaction forces measured. The substructure is "isolated"

from the test stand by measuring the reaction force; thus the substructure can

be identified. In addition, test stand dynamics are automatically taken into

account, so there is no need for a separate modal test or finite element model

of the test stand. This procedure makes it possible to obtain not only the

fixed-interface modal data for a Craig-Bampton substructure model, but also

the data associated with the constraint modes.

An overview of the theoretical derivation of the proposed SSID algo-

rithm, which is a two-step identification process, is provided in this Chapter.

A complete description of the algorithm is given in Reference [4].

1Although designed especially to facilitate accurate testing of substructures, the algorithm
can be considered to be a "general-purpose" structural system identification algorithm.

21
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3.1 Identification of M -1C and M-1K

Assume that the substructure has viscous damping and that the total

number of motion transducers (accelerometers) is at least twice the expected

number of normal modes in the frequency range of interest 2. Every interface

degree of freedom is to have a co-located actuator/sensor (force/accelerometer)

pair. In addition, there are to be motion sensors (accelerometers) at selected

interior degrees of freedom.

Let the equations of motion in physical coordinates and the output

equation be

Mf_ + C5c + Kx = Dp(t)
(3.1)

y= S_

where x E R N_ is the displacement vector; p E R Np is the input force vector;

y E R N, is the output measurement vector; M, C, and K axe the system mass,

damping, and stiffness matrices; D is the force distribution matrix, and S is

the acceleration sensor distribution matrix. For the present discussion, we will

assume that the above Nz-degree-of-freedom model represents a reduced-order

model of the structure. Let the coordinates be partitioned in the following

manner:

X -- Xi _ Xf
Xb

Xr

(3.2)

2This restriction may be relaxed by the method described in Section 6.4.
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where f stands for _forced DOFs (i.e., DOFs where there is an active force

input); r stands for reaction DOFs (i.e., interface DOFs where the tested sub-

structure reacts against the support structure); i stands for interior DOFs

(i.e., not a DOF where and active force is applied or a reaction is measured);

and b stands for _boundary DOFs, the combination of f-coordinates and r-

coordinates. These sets of coordinates are illustrated in Fig. 3.1.

X t

\ /\ /
Substructure _ Tested Test Stand

Figure 3.1: Substructure Model - Vibration Test Configuration

Equation 3.1a can be written in the following partitioned form (damp-

ing is omitted here):

M_ M, I

Mr, MII
M_ Mr I

Mr,. 5:1 + KIi KI] Kit x] = [D]p(t) (3.3)

Let us consider the complex frequency response of the substructure

due to excitation at frequency w_, but with the interior DOFs force-free. Then,

p_(t) =- PI(t) = P(w_)e_'_*t=- R(w,) (3.4)
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(From Eq. 3.4 onward, the vectors can be complex.) The complex displacement

response can be written as

(3.5)

and similar expressions can be obtained for velodty, etc. Then, the frequency-

domain version of Eq. 3.1a can be written as

R(wk) } (3.6)

The experimental data input to the algorithm is complex, but the

system matrices to be identified are real. To insure that real matrices will be

determined, a procedure from ReE [42] is used. After some algebraic manipu-

lation, the following equation is obtained for estimating the matrices C', K, D!

and/),:

[e k b_ b,]

where

L_ _ J L_ _ J

L-w_J [-_J
-_[Hll] -f3[Hll]
-e[H,_] -_[H,g

= [ -e[Ho.,]-_[Ho.,]] (3:0

C= M-'C , .K= M-1K , [:)!= M-IDI , and D,.= M-_D,. (3.8)



25

and the H matrices are measured frequency response function (FRF) matrices

and _[.] and 3[.] denote the real part and the imaginary part of the given

quantity, respectively. The data used in Eq. 3.7 is stacked in the following

manner:

_g_,sl(w1)

j-!_lY,,,l, (w, )

•..
•"

•

• "" ' H-2I_s (0JN.)jco_,

1 H,

The other partitions of the data in Eq. 3.7 are formed similarly.

(3.9)

A least squares solution or a total least squares solution of Eq. 3.7

is required. A further discussion of least squares solution procedures is given

in Chapter 5. The effects of noise on the input and output signals can be

minimized by averaging the FRFs in Eq. 3.7 rather than the force and response

spectra of Eq. 3.6.

3.2 Identification of M, C, and K

In the previous section, an algorithm was described for identifying the

system matrices C,/_, and/), which are defined by Eqs. 3.7. From the system

matrices 6', K, and/), we wish to determine the system matrices M, C, K,

and D, especially the first three. The first step is to perform an eigensolution

using the matrices identified from Eq. 3.7. Let No - 2Nx, and let us define the

state variable
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and state matrices

x } (3.10)z_-

o']o.--o]o.--[°]o (3.11)

Then the following eigenproblem is solved for the complex eigenvalues _ and

the complex eigenvectors 0r:

[_rA,+ &]_, = 0 r = 1,...,No (3.12)

To determine the system matrices M, C, and K, a mode-superposition

representation of the complex frequency response can be employed. Using the

eigenvectors, 0_, let the mode-superposition solution for the states z be

No

z(t) = _, o_7_(t) = Or(t) (3.13)
r=l

where orthogonality holds in the following form:

with

OTA,_) = diag(5_) , OTB,O = diag(b_)

Aa= M 0 , B,= 0 -M

The following modal-response equations are obtained:

(3.14)

(3.15)

5r'_,.(t) + b,.%(t) = _D,p(t) (3.16)
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The mode-superpositionsolutionleads,eventually,to the following acceleration

frequencyresponse:

where

= =-___ _Tr (3.17)

Pk - { F(_k)R(w_) }

Rk, = \jwk - _,]

(3.18)

(3.19)

As in deriving Eq. 3.7, assume that averaged frequency-response data

axe available at N_ frequencies, so Eq. 3.17, averaged at each of these frequen-

cies, leads to the following equation:

No [ G.t'.t" ] (3.20)

If Eq. 3.20 is postmultiplied by G]}, the following expression for the accelerance

FRF is obtained:

N. [It.t] (3.21)

Now, the left-hand and right-hand sides of Eq. 3.21 axe matrices of dimension

N, x N/. Let fj indicate the jth column of each side of this equation. Then,

write the jth column of Eq. 3.21 in the form

,=I H'I_

Finally, let Eq. 3.22 be repeated for each of the N_ frequencies and N I forces,

and the resulting equations stacked vertically to form the following equation:
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I Hal_(wl) Eli El2 ... El,No ]

(HoI_@N.) E..,, E_:.,2 E_:.,:_. I_

H,_.t-Nl(wl) Ell EI_ EI,N° 1

I,H./,_(wN.) EN_,_EN.,2 E_v_,,N.I,,_

where

l/a, }
I/aN.

(3.23)

.},] + (3.24)

Equation 3.23 is the key equation that is required to estimate the

system matrices M, C, and K. It is used to obtain least squares estimates of

the Armmodal parameters fir. The corresponding modal parameters br can then

be computed from

br = -A_¢ r = 1,..., N, (3.25)

With these values of _ and br, the state matrices A, and Bs, defined by

Eqs. 3.15, are computed by using Eqs. 3.14, written in the form

A, = O-rdiag(_.)_} -1

B, = 6-Tdiag(_,,.)6-'
(3.26)



29

Finally, the system matrices M, C, and K are obtained by referring to Eqs. 3.15

and extracting the appropriate partitions of the As and Bs matrices that are

obtained from Eq. 3.26.



Chapter 4

Reduced-Order Analytical Models

As was discussed in the previous chapter, the output of the Substruc-

ture System Identification algorithm is the set of characteristic matrices that

represent the substructure. Since data can be measured only at a limited num-

ber of locations, it is not possible to measure all of the degrees of freedom of

a continuous structure. The resulting model is spatially incomplete and can

be considered to be a "reduced-order" model of the infinite degree of freedom

structure. To relate the resulting SSID matrices to some analytical reduced-

order models, several analytical model-reduction methods are discussed and

compared in this chapter.

Model reduction is an attempt to reduce the size of an analytical

model but still retain the essential dynamic characteristics of the model. An

overview of model reduction methods is presented in Section 4.1. In Section

4.2, the Guyan reduction technique is discussed. Section 4.3 describes various

other reduction methods in use. Finally, a Craig-Bampton type reduced-order

model that is suitable for test-analysis correlation is presented in Section 4.4.

4.1 Review of Model Reduction Literature

The finite element method has become a very useful tool in the anal-

ysis of modern structures. Stress analysis, failure analysis, internal loads pre-

3O
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diction, and design modification usually require very fine discretizations, which

can lead to finite element models on the order of tens of thousands (or more)

degrees of freedom. Coarse finite element discretizations are not suitable, since

they usually do not possess sufficient detail for accurate representations of the

mass and stiffness of the structure.

To verify that the FEM is sufi_ciently accurate to predict the struc-

ture's response, the FEM must be test validated. The accuracy of the FEM

is often assessed by comparing the modal parameters of the analytical model

to those extracted using vibration test data. Test and analysis natural fre-

quencies can be compared directly. However, the modal vectors cannot be

readily compared since the FEM will have many more degrees of freedom than

the test configuration will have accelerometers. In order to compare the FEM

results with the test results, the test vectors need to be expanded to the an-

alytical space or the analytical vectors need to be reduced to the test degrees

of freedom. The former has a severe drawback in that errors present in the

FEM model that is to be validated are introduced into the test modes that

are assumed to reflect the true structure. This corruption of the test data will

generally lead to errors in the model validation process. In addition, there are

greater computational costs associated with model expansion than with model

reduction.

The second approach results in a reduced representation of the FEM,

a test-analysis model (TAM). This leads to a one-to-one relationship between

the TAM degrees of freedom and the number of accelerometers in the test

configuration. A number of procedures for generating reduced-order models



32

have been developedin the past. The reduction methods are based on Ritz-

type transformations of the form

B = TTAT (4.1)

where A is the original matrix, B is the new matrix, and T is the transfor-

mation matrix. The differences between methods lie in the transformation, or

interpolation shapes, used to represent the motion of the non-instrumented,

or omitted, degrees of freedom in terms of the measured, or retained, degrees

of freedom. The measured degrees of freedom will be referred to as the a-set

(_active degrees of freedom) and the omitted degrees of freedom will be referred

to as the o-set.

The model reduction can be done at the system level or at the com-

ponent level using component mode synthesis (CMS) methods. The two ap-

proaches used most often in system model reduction are Guyan, or static, re-

duction and modal reduction. The modal reduction approach lends itself very

easily to component-mode-synthesis based substructuring methods. Static and

modal reduction methods differ in both accuracy and robustness, terms which

are defined in Reference [43]. Reference [43] defines accuracy as the measure of

the capacity of the reduced-order model to predict the modal frequencies and

mode shapes of the FEM. Robustness is defined as a measure of the TAM's

ability to show orthogonality of test modes when the FEM has inaccuracies.

4.2 Guyan Reduction

The simplest and most straightforward reduction procedure is the

Guyan, or static, reduction method [44]. This method is very useful for gener-
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ating test-analysismodelssincethe measureddegreesof freedomcanbeselected

as the onesto be retained in the reduction process.However, the Guyan re-

duction method is quite sensitiveto the selectionof omitted degreesof freedom

andoften results in poor accuracyif there is inertia associatedwith the omitted

degreesof freedom.Variousauthorshavedevisedwaysfor automatedselection

of the best degreesof freedomto retain [45,46].

The principal assumptionof the Guyan reduction procedure is that

inertial forcesassociatedwith omitted degreesof freedomarenegligible in com-

parison with the elastic forcestransmitted to the omitted degreesof freedom

by the motion of the retaineddegreesof freedom.The mathematical statement

of the aboveassumptionis basedon solving a static problem of the form:

If there ere no loads applied at the omitted degreesof freedom, the upper

partition of Eq. 4.2 can be solved, giving

xo = - K_I K,,_xa (4.3)

This yields the following Guyan transformation matrix from the original degrees

of freedom to the a-set degrees of freedom:

T'_*_= [ -K_IK'_ ]I (4.4)

The rth column of the transformation matrix represents the static displacement

of the structure when the rth a-set degree of freedom has a unit displacement

and the remaining a-set degrees of freedom have zero displacement. This dis-

placement type of shape is commonly referred to as a constraint mode. If
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the modal shapes in the frequency range of interest can be expressed as lin-

ear combinations of the constraint modes, the Guyan model will be a good

approximation.

In the above transformation, it was assumed that there are no forces

applied to the omitted degrees of freedom. This is not an accurate assumption if

the omitted degrees of freedom possess significant mass. If the omitted degrees

of freedom possess large mass-to-stiffness ratios, the omitted inertia terms will

be nontrivial, and will cause errors in the natural frequencies and mode shapes

of the reduced-order model.

4.3 Other Model-Reduction Methods

Since the introduction of the Guyan model reduction method, various

attempts have been made to improve upon the Guyan reduction method. A

method developed by O'Callahan [47], called the Improved Reduced System

(IRS), includes a static approximation to the dynamic inertia terms of the

omitted degrees of freedom:

THts= Tr,.at_ + T,l_,,_,.,,_ (4.5)

where

[ _' -, ]
Td_,_,,,_ = K_I[M"_ -}"M,x, r._:]M;_t_K_.,_u,: (4.6)

I

where M,u,_ -- TT_t_MT_.,u_, Ks_t_ = T_,_KTstat_, and M and K are the

original FEM mass and stiffness matrices, respectively. The resulting eigen-

solution of the reduced-order IRS model is generally more accurate than that

obtained using the original Guyan method, but it is still an approximation
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of the original FEM dynamics. The original IRS method is applicable for

global, or system, models and is not directly applicable for substructure mod-

els. Flanigan describes an extension of the IRS method which works with

dynamic substructures to create substructure level TAMs [48].

An analysis of the robustness of the IRS method has been given by

Gordis [49]. He points out that even though the IRS TAM may provide better

estimates of the mode shapes and natural frequencies than the Guyan method,

the static TAM may provide better orthogonality of the test modes. This is due

to the approximation of the inertia terms by the IRS method and is dependent

upon the degrees of freedom that are retained. The retained degrees of freedom

should be selected so that the lowest frequency of the modes of the omitted

system is above the frequency range of interest; otherwise the approximation

of the inertia term will be poorly conditioned.

Kammer introduced a TAM methodology that is a modal reduction

method [50]. The advantage of this method is that it produces an increase in

accuracy of the natural frequencies and mode shapes. This method provides

an exact transformation between the FEM degrees of freedom and the TAM

degrees of freedom by using the target modes of interest as the basis of the

transformation to relate the omitted degrees of freedom to the retained degrees

of freedom. The modal transformation is given by

T,,_ = Ct_I_ (4.7)

T -1 T= (4.8)

where the columns of &t are the target modes, and _ is the generalized inverse

of the target modes partitioned to the retained degrees of freedom. This same
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transformation was also presented by O'Callahan as the System Equivalent Re-

duction/Expansion Process (SEREP) [51]. The resulting reduced-order model

is in physical coordinates. When the number of target modes used to form the

modal transformation is equal to the number of active degrees of freedom, the

modal mass and stiffness matrices contain an exact description of the FEM's

dynamics for the modes of interest, that is, the natural frequencies and mode

shapes axe exactly the same as those of the original model. To ensure that

Eq. 4.8 is numerically well conditioned, the active degrees of freedom chosen

should render the target modes linearly independent and observable.

The static TAM is more robust than the modal TAM in situations

where the modes of the test article differ significantly from those measured

during the vibration test. This is true even when the modal TAM accurately

predicts the natural frequencies. The modal reduction method uses a small

number of FEM mode shapes to develop the transformation matrix and this is

more limiting than the static methods which use constraint modes for each a-set

degree of freedom [43]. Kammer [52], and Bhatia and Allemang [53], point out

that in some cases, the use of a modal TAM in test-analysis orthogonality and

cross-orthogonality computation can result in larger off-diagonal terms than

those produced by a "less accurate" static TAM. The authors hypothesize that

the discrepancies between the test mode shapes and the FEM mode shapes are

due to the modal TAM's poor representation of residual modes. Here, residual

modes are those modes that are not included in the transformation matrix.

In an effort to extend the capabilities of the modal TAM method to

include an improved representation of the residual dynamics, Kammer devel-
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opedthe anew method called the hybrid TAM [52]. The hybrid TAM combines

the robustness of the static TAM with the accuracy of the modal TAM. Using

the target modes, an oblique projector matrix is formed to divide the vector-

space containing the TAM dynamics into two complimentary subspaces. The

projector matrix, P, can be expressed as

P = ¢_TT,_tMT,,_o,_ (4.9)

where ¢ is the matrix of FEM mode shapes, T,,o_ is the modal transformation

matrix (Eq. 4.7), and M is the original FEM mass matrix. Note that the last

three terms are just the modal TAM mass matrix. The transformation matrix

for the hybrid TAM can be expressed as a combination of the Guyan and modal

transformation matrices

Th._ = T_u_ + (T..._,- T._,_:)P (4.10)

This TAM preserves the exact representation of the target modes and also

produces a more accurate representation of the residual modes.

In an approach very similar to Ref. [52], Shatia and Allemang [53]

also develop a transformation that preserves the exact FEM target modes and

includes residual mode information. However, their projector matrix is written

as

P--[ 0][ ]_1 (4.11)
where _ is the a-set partition of the target modes and _, is the a-set partition

of the residual subspace. The residual mode information is obtained from the

system flexibility matrix and the target modes; thus the residual modes are
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never computeddirectly. The residual information is obtained from

= c -

where G = K -1 is the system flexibility matrix, Ct are the target modes, and

[diag(A_)] is a diagonal matrix containing the target natural frequencies.

4.4 Craig-Bampton Reduced-Order Models

Component mode synthesis (CMS), or substructuring, is an alterna-

tive approach for model reduction. In the CMS approach, the FEM is first

divided into several smaller substructures. Each substructure is itself reduced

to a smaller number of degrees of freedom. The reduced degrees of freedom

include physical coordinates at substructure interface locations and generalized

coordinates that represent the component modes of the substructure. Once the

substructures are analyzed, the components are coupled together to form the

full system model.

The Craig-Bampton method, a variant of the Hurty method [54], is

the most popular CMS method, and its derivation is described in Reference [55].

The transformation in the Craig-Bampton method involves component-level

fixed-interface normal modes augmented with a set of constraint modes. This

results in a model that is statically exact at the boundary locations. This

method is usually more efficient and more accurate than a static reduction

when the same number of degrees of freedom are retained.
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4.4.1 Craig-Bampton Model Reduction

The N physical degrees of freedom of the substructure are first par-

titioned into two sets, the boundary, or interface, degrees of freedom and the

interior degrees of freedom:

x = (4.13)
Xb

where x_ are the boundary degrees of freedom and xi are the interior degrees

of freedom 1. Omitting damping, the equations of motion ere written as

The Craig-Bamp_n method uses the Ritz transformation

x= TcBlq (4.15)

where

: I] (4.16)

(4.17)'_c = - g,71g_

and q is a vector of generalized coordinates having the form

q = Xb

The first column-partition of the Craig-Bampton transformation ma-

trix contains the fixed-interface normal modes. This describes the motion of

1Although originally developed as a component mode synthesis method, the method can

be considered to be a general model-reduction method by simply letting i --* o and b --*

_a. That is, let "interior" coordinates be more general "omitted" DOFs and, likewise, let

"boundary" coordinates be more general "active" coordinates.
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the interior degrees of freedom relative to the boundary degrees of freedom in

terms of the normal modes of the substructure with the boundary degrees of

freedom fixed. The fixed-interface normal modes are obtained by solving the

eigenproblem for the interior degrees of freedom

(K. - w_Mii)¢r = 0 (4.19)

or

K.¢. = (4.20)

where the subscript r denotes the rth fixed-interface normal mode. The second

column-partition of the transformation matrix contains the constraint modes.

These are similar to the constraint modes described previously. The rth con-

straint mode is defined by producing a unit displacement at the rth boundary

degree of freedom with all other boundary degrees of freedom constrained and

with all interior degrees of freedom unconstrained.

The final reduced-order matrices obtained are a combination of phys-

iced (boundary) coordinates and generalized modal coordinates. These gen-

eralized coordinates cannot be used directly for test-analysis correlation and

therefore must be transformed into suitable physical coordinates.

4.4.2 Craig-Bampton Models in Physical Coordinates

The transformation from generalized coordinates to physical coordi-

nates for Craig-Bampton models is described by Huang and Craig [56]. The

interior physical degrees of freedom are partitioned via

{x'} = { x"}Xo (4.21)
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where x_ are the degrees of freedom where measurements will be made during

the vibration test and Xo are the omitted degrees of freedom. The equations of

motion can be rewritten as

}Mo,. Moo M_ _o + Ko,.

M_ M_ M_, ._b K_,

Koo K,,b Xo = fo

K_ K_ Xb fb

Then, Eq. 4.15 can be written as

{x}Xo = TcBlq= apo _Po q_

Xb 0 I Xb

(4.22)

(4.23)

This leads to the transformation matrix TcB2 relating the generalized coordi-

nates to physical coordinates to be used during the test:

(4.24)

A similar approach was developed by Karnmer [57], but Huang and Craig point

out that the contribution of the constraint modes to the transformation matrix

Tc_ was not included in Kammer's formulation of the transformation.

The order of the Craig-Bampton model is determined by how many

fixed-interface normal modes are used to augment the constraint modes when

forming the transformation matrices. If the desired size of the reduced-order

model is k, then the number of fixed-interface normal modes retained is r_ =

k - rib. Typically, only the lowest n_ fixed-interface normal modes are kept.

This results in a Craig-Bampton model that accurately predicts the lowest k

modes of the substructure. However, if the target modes are not the lowest

consecutive modes, then the analytical modes from the Craig-Barnpton model

will not necessarily correlate well with the target test modes.
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In order for the Craig-Bamptonmodel to representthe target modes,

a proper set of fixed-interfacenormal modesmust be selected. This set con-

sists of the fixed-interfacenormal modes that contribute most to the target

modes. The selectionprocessis accomplishedin the samemanner that was

used in Ref. [58] to determine which coordinates to selectas the rigid-body

coordinates to solve a semidefiniteeigenvalueproblem. Gaussianelimination

or other factorization methodscan be performedon ¢,r with pivot selection

being used to determinewhich columnsof _,_rcontribute most to the target

modes. Full column and row pivoting is necessaryin the event that one of the

retained interior degreesof freedomlies along a node line of a fixed-interface

normal mode. It wasobserved,however,that this selectiontechniquewasde-

pendentupon the scalingof the fixed-interfacenormal modesand further study

is neededto removethe scalingdependence.

A Craig-Bampton test-analysismodel suitable for correlation with

the test modescan be obtained by choosingthe fixed-interfacenormal modes

that contribute most to the test modes.The final form of the transformations

defining the Craig-BaraptonTAM are given by

MCB T T--- T_B2T_B, MTcB, Tc _ (4.25)

KCB T T= T_s2T_B, KTcB, Tcs 2 (4.26)

fcs -" T_vB2T_c,,f (4.27)

where the transformation matrices contain the proper set of fixed-interface

normal modes.



Chapter 5

Computational Aspects of the SSID Algorithm

This chapter describes some of the computational considerations as-

sociated with the SSID algorithm. Section 5.1 contains a description of various

methods of solution for a set of linear, algebraic equations. The ill-conditioning

associated with frequency-domain identification procedures and a possible rem-

edy for this problem are discussed in Section 5.2. The topic of model order

determination is addressed in Section 5.3.

5.1 Least Squares Methods

The solution of systems of linear, algebraic equations is involved in the

key mathematical steps in the Substructure System Identification algorithm for

accurately identifying the substructure. The method of solution can drastically

affect the resulting identified system. The methods of solution used in the

numerical simulations in this report are the least squares (LS) method and the

total least squares (TLS) method. A brief explanation of the methods and of

their differences is given here.

The least squares method and the more recent total least squares

method are both mathematical modeling procedures used to solve an under-

or over-determined linear system of equations of the form

AX = B (5.1)

43
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where A is an m x n data matrix, X is an n x d matrix of unknowns, and

B is an m x d matrix of observations. A set of under-determined equations

resultswhen there are more unknown parameters than equations; for the over-

determined system, there are more equations than unknowns. Unless B belongs

to the range of A, R(A) (i.e.,the setiscompatible), the over-determined system

of equations has no unique solution. This case,which resultswhen the data

contains noise,willbe denoted by

Ax B (5.2)

The approximation symbol is used to emphasize that the data (i.e., A and/or

B) may be contaminated by noise. If there is no noise in the data, then the

equality is valid. The least squares method and the total least squares method

seek a solution that minimizes the error, _, between the true system model and

the measured data. The solution obtained depends on the error model and on

the weighting of the data used by each method. If the noise does not match the

error model, a biased estimate of the solution will result. An unbiased estimate

is one that, on the average, neither tends to over-estimate nor under-estimate

the true solution.

Figure 5.1 geometrically illustrates the error models used in the two

methods. By depicting the least squares and total least squares methods as

measures of goodness-of-fit, the least squares problem is one of minimizing

the sum of the squared distances along a single coordinate axis. Whereas the

total least squares problem seeks to minimize the sum of the squares of the

perpendicular distances of the observed data from the fitted line to provide the

best fit.
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B B B
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Figure 5.1: LS and TLS Error Models

5.1.1 The Least Squares Method

Perhaps the best known method of solution for an over-determined

system of linear equations is the least squares method. For simplicity, consider

the case when d = 1. The accuracy of the least squares solution is independent

of the number of right-hand-side vectors used in the computation. In the

classical least squares approach, the measurements of the variables in the data

matrix A are assumed to be free of error; hence all errors are confined to the

observation vector b. A least squares estimation could also be made assuming

that the observation vector is exactly known and the data matrix contains

errors. The least squares method will result in an unbiased estimate if the

error model of the given data is of either of the following two forms:

Ax = {b0 + Ab} (5.3)

[A0+ AA]x = b (5.4)

where Ao is the true data matrix, b0 is the true observation vector, and AA and

Ab are the corresponding errors. In most situations, Eq. 5.3 is the form that

is assumed, so it will be used here in the following discussion. It is assumed

that the errors Ab_ and AA_i, i = 1,..., m and j = 1,..., n are uncorrelated
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random variableswith zero mean and equal variance. This assumesthat any

necessarypreprocessingmeasureson the data such as scaling and centering

have been performed in advance.

The classical least squares estimate is equivalent to minimizing the

sum of the squares of the differences, or the 2-norm, between the measured

observation vector b and an estimated observation vector/_. The least squares

problem seeks to min Hb - t;l[2 where/_ is the orthogonal projection of b onto

the R(A). This amounts to perturbing the observation vector b by a minimum

amount A/_ so that/_ = b - A_; can be predicted by the columns of A, that

is, _ lies in the R(A). The minimum perturbation, A_, is the called the least

squares correction. The resulting least squares solution, assuming that A is of

rank n, is

= (ATA)-IA T b (5.5)

In addition to the above normal-equation solution, the least squares solution

can also formulated using other techniques, such as the singular value decom-

position or the Q-R decomposition.

The main assumption made in the classical least squares estimation

is that errors only occur in the observation vector b and that the data matrix

A is independent of noise. However, this assumption is frequently unrealistic:

sampling errors, modeling errors, instrument errors and human errors may

imply inaccuracies of the data matrix A as well. This will cause the least

squares solution to yield a biased estimate.
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5.1.2 The Total Least Squares Method

The total least squares method [61] was developed to provide esti-

mates that are generated from a system of linear equations where it is assumed

that both the data matrix A and the observation matrix B contain noise. The

error model for the total least squares method is of the form

[Ao + AA]{X} _ [B0 + AB] (5.6)

The error criterion again assumes that the errors are uncorrelated random

variables with zero mean and equal variance.

The total least squares problem is formulated by rewriting Eq. 5.1 as

a homogeneous system of linear equations

The approximation symbol is again used to emphasize that the data is con-

t_.minated by noise. If there is no noise in the data, the right hand side

of _1. 5.'/will be identically zero. The total least squares problem seeks to

min [[[A; B]- [A;/_][[F subject to/_ e R(A), where A and /} are the total

least squares approximations of A and B required to make the set of equations

compatible. The Frobenius norm, [[ • [If, is a measure of the size of an m x n

matrix; similar to the vector 2-norm, which measures the length of a vector.

Again, for simplicity, assume that d = 1.

The solution to this homogeneous system of linear equations is or-

thogonal to the row space of the augmented data matrix, that is, it is equal to

the nullspace of the augmented data matrix. The nullspace of a matrix consists
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of all vectors _ such that [A; b]_ = 0. There are numerous methods that can

be used to divide the augmented data matrix into a system subspace and a

null subspace, but the numerically stable singular value decomposition is most

often used.

Singular value decomposition methods are based on the following the-

orem of linear algebra [59]: Any m × n matrix Z can be written as the product

of an m × m column-orthogonal (or unitary if Z is complex) matrix U, an m × n

diagonal matrix E with non-negative elements, and the transpose (Hermitian)

of an n × n orthogonal matrix V, that is,

Z = Ur, V r (5.8)

Assuming that Z is of rank r where (r <: min{m,n}), then [60]:

• The columns of U are called the left singular vectors of Z and are the

eigenvectors of Z Z T.

• The first r columns of U form the column space of Z.

• The last m - r columns of U form the nullspace of Z T.

• The diagonal elements of Z are the singular values (a_, i = 1,..., n) of

Z sorted in descending order. The rank of Z is equal to the number of

non-zero singular values.

• The singular values squared are the eigenvalues to both ZZ T and zTz.

• The columns of V are called the right singular vectors of Z and are the

eigenvectors of zTz.
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• The first r columns of V form the row space of Z.

• The last n - r columns of V form the nullspace of Z.

Notice that the columns of U and V give orthonormal bases for all four funda-

mental matrix subspaces.

The singular value decomposition expresses a matrix as a linear com-

bination of rank-one matrices. The best rank p (p < r) approximation of matrix

Z is obtained by retaining the first p terms of this decomposition, which cor-

responds to the p largest singular values. The error of this approximation is

the smallest among all rank p matrices, and is equal to the next singular value

a_-i when the 2-norm is used to measure the error.

Let the singular value decomposition of the augmented data matrix

[A; b] be given by

[A; b] = V_V T (5.9)

where U is an m x m matrix, _ is an m x (n + 1) matrix, and V is an (n +

1) x (n + 1) matrix. If there were no errors in A and b, b would lie in the space

defined by the columns of A and the set would be compatible. The rank of

matrix [A; b] would be n and the corresponding total least squares correction

would be zero. The total least squares solution could be determined from the

last right singular vector. However, since A and b contain errors, the matrix

[A; b] is of rank n + 1 and there is no nonzero vector in the nullspace of [A; b],

N([A; b]). To obtain a compatible set, the rank of matrix [A; b] must be reduced

to n. The best rank n approximation of [A; b] is given by

^ ^

[A; b] -- U_,V T (5.10)
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where _=diag(al,...,a,,0). The total least squares minimal correction is

thus a,+l - min II[A; b] - I/l; b]l[F. The approximate set of equations is now

compatible and its solution is given by the only vector v,,+l that belongs to

N([.4; b]). The total least squares solution is obtained by scaling v,+l so that

its last component is -1 or

-- Vn+l
-- "On+l,n+l

If the rank of the nulispace is greater than one, multiple estimates

of the solution vector will exist. This occurs whenever an = a,,+l, or more

generally if ap > ap+l -- .... a_+l with p < n. This situation also occurs

whenever the system of equations is under-determined. Instead of accepting

all the solutions as estimates and then performing some type of averaging, a

linear combination of the estimates will be used to find the minimum norm

total least squares solution.

In the case when ?3n+l,n+l = 0, the total least squares problem may fail

to have a solution. This type of problem is referred to as a nongeneric problem

in the literature. Nongeneric problems occur whenever A is rank-deficient, or

when the set of equations is highly conflicting. A total least squares solution

may still be found by imposing an additional constraint -1 2_ v.+l.

A generalization of these results can be made to allow for multiple

right-hand sides, that is, for d > 1, where B E /_xd. For exanaple, using
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Eq. 5.7, Eq. 3.7 canbe written as

(_)A(wk)
[C /_ 3I 3,. I] -F(w_) _0 (5.12)

A(wk)

The singular value decomposition of matrix [A; B] can be computed as:

= o :C2 ½2 (5.13)

where U is an m x m matrix, _ is an m x (n + d) diagonal matrix, and V

is an (n + e0 x (n + d) matrix. When the rank of matrix [A; B] is greater

than n, the set is incompatible. The last d singular values, a,+l,..., a,+d, are

not equal to zeros. The total least squares method forces the equations to be

compatible by setting the last d singular values to zero. These are the smallest

singular values and are due mainly to the noise in the data. Again, this is the

minimal correction to the augmented matrix [A; B]. The right singular vectors

corresponding to the last d singular values define the nullspace of the augmented

matrix and form the total least squares solution. After being properly scaled,

the solution is

2 = -V12V,_ I (5.14)

In practical applications, a threshold value must be set to determine

which of the singular values should be set to zero. The threshold value depends

in part on the quality of the measurement data. Estimations for the noise

level on the data, if such data is available, can be used to determine this

minimum value. Note that the ratio #1 cannot exceed the precision limit of
O"n

the machine [62].
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5.1.3 The Scaled Total Least Squares Method

In both of the methods previously discussed,itisassumed that any

necessary preprocessing of the data, such as scalingand centering,have been

performed in advance. This ensures that the measurement data used in the

computation is equalized in magnitude and willresultin the best unbiased

solution.

The data matrix in Eq. 5.12 can be decomposed intotwo matrices by

using the totalleastsquares errormodel given in Eq. 5.6,

[X I]_Z---O (5.15)

where

k a, a,] (5.16)

and

(_)Ao(wk) (_l-z_ )Eo(wk)

Z = Zo + E = -Fo(wk) + --E$(_k) (5.17)

A(wk) Eo(cak)

where Z0 is the true error-free measurement data and E is the measurement

error matrix. Inspection of Eq. 5.17 reveals that some sort of scaling of the

measured data is needed before use in the system identification process. For

the frequency range from 10 I-Iz to 200 Hz, the multiplicative factors associated

with the errors range from 1 to 6 x 10 -7. Therefore, in order to achieve the

best unbiased estimation, the data matrix Z should be scaled so that the noise

is row-wise equalized.



53

To perform this equalization, Li, et al. [39, 40] utilized a scaling pro-

cedure that is referred to as the scaled total least squares method (STLS).

For the examples given in Refs. [39, 40], the STLS method results in better

estimates than do the least squares method and the total least squares method

without scaling. However, the scaled total least squares method assumes that

an estimate of the error matrix is available. In test situations, this information

is usually not known. A more practical scaling method is thus needed, but

Eq. 5.17 emphasizes the need for proper scaling of the meam_ement data.

It is important to remember that least squares and total least squares

axe only two possible techniques for estimating the unknown parameters of a

linear system. The total least squares method does, however, give the best

estimates (in a statistical sense) when the error of the system satisfies the total

least squares error model [61].

5.2 Narrow-Band Data Processing

It has been mentioned previously that frequency-domain identification

algorithms generally result in better estimations when used as narrow-band

identification procedures [36]. This is believed to be due to the exponent in

the frequency-domain equations of motion. However, sometimes not all of the
Q

target modes lie within a narrow frequency band. For instance, the target

modes may span a frequency range of 2 kHz or more. Terms in the resulting

equations of motion would vary by a minimum of 8 orders of magnitude, and

this could lead to the data being _-conditioning. In the SSID algorithm, the

first estimation procedure, (i.e., the solution of Eq. 3.7) is more prone to ill-
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conditioning than is the second step (i.e., the solution of Eq. 3.23) since this

step uses accelerance, mobility, and receptance frequency response functions.

In the original formulation of the SSID algorithm [3], all of the mea-

sured data was to be processed simultaneously. As just pointed out, this could

lead to numerical difficulties. To alleviate this problem, a concept referred to

_mi processing has been employed. The basic idea behind band processing

is to work with narrow bands of frequency data individually, and thus avoid

some of the conditioning problems. In this manner, experimental data span-

ning several decades could be processed incrementally, for example 500 Hz at

a time, by the SSID algorithm until all of the data has been included in the

identification.

The band processing is implemented in the SS1D algorithm as follows.

First, the experimental data is acquired in the usual manner covering as many

decades as necessary to obtain all of the desired modes. The data is then

divided into suitable bandwidths of overlapping frequency bands. The overlap

allows redundant processing of all of the data; in effect, all of the data is

processed twice. Then, the SSID algorithm is used to process each frequency

band individually though the solution of the state-space eigenvalue problem,

Equation 3.12. From each complex-conjugate pair of eigenvalues, a natural

frequency and damping factorcan be computed by

r = 1,... ,N= (5.18)

r = I,... ,N= (5.19)

¢, =
ILl

Wr -"

This step isrepeated untilallof the frequency bands have been processed.
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The next step is to separate the structural roots from the compu-

tational, or noise, roots. In this study, four criteria were used to distinguish

between the physical modes and computational modes.

1. To graphically aid in the selection process, the estimated natural fie-

quencies and the frequency bands are plotted versus the entire frequency

bandwidth. Any estimated frequencies lying outside of the given fre-

quency band are discarded.

2. Roots with negative damping values are discarded.

3. The modal phase collinearity (MPC) is computed for each complex-conjugate

pair of mode shapes. Those modes with less than a specified MPC value

are discarded. The value is dependent upon the level of noise in the

measurement signal and the quality of the data.

4. If the root is not repeated in another frequency band, it is discarded.

Thus, the need for the overlapping frequency bands. True structural

roots will be estimated in multiple frequency bands, while computational

ones are highly unlikely to be repeated in multiple frequency bands.

The flow chart in Figure 5.2 summarizes the steps in the band processing

procedure.

The modal phase collinearity is an index developed by Juang and

Pappa [26] that measures the linear functional relationship between the real and

imaginary parts of the mode shape coefficients. It based on the assumption that

for lightly damped structures, the estimated mode shapes from Eq. 3.12 should
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Figure 5.2:Band ProcessingFlow Chart
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of the same mode shape should either be 0 ° or 4-180 °.

be close to normal, that is, the phase angle between the complex coeffidents

The MPC index is

computed from

where

_T _ 21e_+1) sin2 a-1

MPC- lIO_ll2 + -_-I,,, , (5.20)
I1_112+ II_Jl 2

= _ --_=1_ (5.21)
N_

IIO,_II2- IIO_IP
= _'_._,-=_= (5.22)

a = arctan(lel+ _ + e:)

and

(5.23)

and ]] • I} represents the Euclidian norm of a vector. An MPC index of near

unity indicates a normal mode, while a low index indicates a "noise mode."

It should be noted that the MPC assumes real normal mode behavior of the

given structure, which is valid for most structures.

Once the computational roots are eliminated and the physical roots

stored, the SSID algorithm can proceed to identify the system matrices just

as before using the remaining structural roots. Any of the repeated roots and

corresponding eigenvectors can be selected from a given frequency band for use

in the second part of the SSID algorithm since the eigenvectors are arbitrarily

scaled. The scaling used to determine the system matrices arises from the

solution for the _ coefficients in Equation 3.23.

In the band processing simulations included in the Chapter 6, three

different approaches where used to estimate the _ values. The first was to

solve Eq. 3.23 and estimate the 5 coefficients using all the FRF data in a given
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frequency band from which the root was selected. This approach is referred

to as BP1 in Section 6.3. The second approach is similar to the first, except

that only data near resonance is used in the estimation of the _ values. This

approach is referred to as BP2. The third approach is to use the data obtained

near the resonances of all of the selected roots simultaneously in Eq. 3.23; this

is referred to as BP3. The first two approaches provide a local estimation,

while the last is a global one since data from multiple frequency bands is used

simultaneously.

Band processing also holds the potential of significant computational

savings. Since the computations are clone band by band with a much smaller

amount of data, each frequency band could be processed simultaneously on a

parallel-processing computer. For tests where a large number of frequency lines

are obtained, this could prove to be very cost effective.

5.3 Model Order Determination

Perhaps the most important, and most di_cult, part of system iden-

tification is the determination of the proper model order. For structures with

a very high modal density,there are typicallymore modes in the frequency

bandwidth than there are output sensors. For many system identificational-

gorithms, including the SSID algorithm, thisposes a seriousproblem that they

are unequipped to handle. In itspresent formulation,the model order islim-

ited to the number of output sensors.This isthe only seriousdrawback of the

method.

For the case when there are more modes present than sensors,the size
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of the model must be expanded. An attempt to expand the size of the identi-

fication has been developed using pseudo degrees of freedom. The additional

degrees of freedom are obtained by stacking the data used in Eq. 3.7 differently.

The input frequency spectrum is divided in half, into a low-frequency spectrum

and a high-frequency spectrum. In Eq. 3.9, the low-frequency response is then

stacked on top of the high-frequency response as shown:

H,, l,(wl) ... 1 H, ,s-s('M.)

"N.:, °". (5.24)
-- ! .. • _ H

L jw j _,,,N,+H..,II(WN.÷l) al,fN.f (('_Ne)

1 H, •""

where N, -- Y__. Stacking the data in this manner essentially doubles the order

of the model.

Thus, although the lower partition of data is measured at the same

physical coordinates as the upper partition of lower-frequency delta, the system

modes that contribute to the two sets of data are not identical. The lower

partition is referred to as data from pseudo degrees of freedom. After Eq. 3.7 is

solved using the expanded model, the state-space eigenvalue problem, Eq. 3.12,

is solved. However, the details of the second step of the algorithm, the iden-

tification of the system matrices, have yet to be resolved. Further research is

needed in this area. Section 6.4 presents results obtained by processing through

the first step of the SSID algorithm employing pseudo degrees of freedom.
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Numerical Simulations

This chapter describes the numerical simulations used to study the

Substructure System Identification algorithm. The simulations presented here

focus on model-reduction and the SSID algorithm's ability to identify a valid

reduced-order structural model. This is a problem that should be addressed by

all system identification algorithms, since spatial truncation is inevitable in test

situations. A proof-of-concept example and examples using lumped-parameter

models are given in References [3, 63].

In Section 6.1, a description of the analytical model and an overview

of the simulations are given. The results from several simulations are pre-

sented in Section 6.2. Results from simulations employing band processing are

included in Section 6.3. Section 6.4 presents the results when the model or-

der is expanded by the introduction of pseudo degrees of freedom. The SSID

reduced-order models are compared to other TAMs in Section 6.5.

6.1 Model Description and Overview of Simulations

The analytical model used in the simulations is a 52-DOF FEM of the

"Payload Simulator" in the Structural Dynamics Laboratory at The University

of Texas at Austin. This is a model of the structure that was used in a previous

study to measure the reaction forces at the substructure-test stand interface

6O
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locations [64]. The physical structure consistsof two 60-in.-long aluminum box

beamsconnectedby two 20-in. cross-beamsat either end.

The FEM consistsof 18 nodes and 20 beam elementsand is illus-

trated in Figure 6.1. The physical structure undergoesmotion primarily in

the Z direction, so all of the X and Y translations and Z rotations are con-

strained in the finite elementmodel. The two cross-beamsat eachend of the

physical structure areconnectedby very short rods, and were originally mod-

eled with NASTRAN ROD elements. However,this proved to be too stiff, so

the rod elementswerereplaced with multi-point constraints constraining the

Z-translational degreeof freedomof nodes9 and 10 to nodes 18 and 17, re-

spectively. The payload simulator is supportedby soft springsat nodes11,13,

14, and 16 to simulate a bungeecord suspensionsystem. Table 6.1 lists the

undamped natural frequenciesof the finite elementmodel. The three lowest

modesare the rigid body modesof the structure.

The three interface degreesof freedom for this structure are the Z-

translational degreesof freedom at nodes 4, 8, and 18. For the simulations

presented in this section active excitation was used at all of the interface degrees

of freedom, that is, no reaction forces were measured

All of the simulations were performed in MATLAB(_) [65] running on

a workstation. The mass and stiffness matrices were generated by and output

from NASTRAN, and were then converted to a binary "MAT-file" readable by

MATLAB (_). To simulate viscous damping in the structure, modal damping

at a level of 2% was added to all of the modes to obtain a physical damping

matrix for the finite element model.
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Table 6.1: Undamped Natural Frequencies of the Payload Simulator

Number Frequency Number Frequency

(Hz) (Hz)
i* 1.1564 27 1690.4

2* 6.0642 28 1702.2

3* 10.783 29* 2029.1

4* 18.127 30* 2031.2

5* 109.49 31 2079.9

6* 127.14 32 2104.3

7* 137.82 33 2272.3

8* 156.87 34 2289.9

9* 297.66 35 2746.6

10" 304.47 36 2750.7

11 512.54 37 2840.2

12 521.24 38 2842.6

13 567.89 39 2943.9

14 570.46 40 2945.1

15 570.46 41 3403.3

16 583.43 42 3406.0

17" 606.45 43 5017.1

18" 631.08 44 5018.5

19 1073.0 45 7060.1

20 1078.6 46 7061.7

21" 1190.4 47 8887.0

22* 1193.3 48 8888.5

23 1341.5 49 11972.

24 1342.4 50 11973.

25 1342.4 51 14727.

26 1342.6 52 14727.

*Target Modes--modes dominated by Z-translations
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Figure 6.1: PayloadSimulator Finite Element Model

To generatethe "experimentaldata" usedin the simulations, the fre-

quency response functions were generated by solving Eq. 3.6 for A(w_) given M,

C, K, and F(wk). Except as noted, the input forcing function at each frequency

wk consisted of three independent unit forces applied in the Z-translational di-

rection at nodes 4, 8, and 18 respectively. This data was then used as the input

to the SSID algorithm to identify M, C, and K from the simulated measured

acceleration responses, A(wk), and force inputs, F(wk). The input data used

for the simulations presented in sections 6.2.4 and 6.3 contains additive noise

while the input data for the other simulations is noise-free.
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6.2 Simulation Results

6.2.1 Identification of the Full-Order Model

The first simulation demonstrates the algorithm's ability to identify

structural models without any corrupting effects of noise, or of frequency trun-

cation or spatial truncation. In order to identify all 52 modes, it was necessary

to apply both forces and moments since the payload simulator is capable of de-

forming in translational and rotational directions. The inputs were Fz at node

4, Mz at node 17, and My at 18. The identification of the full-order model was

based on 128 evenly spaced frequency lines ranging from 1 Hz to 15000 Hz.

Computer memory constraints prohibited a finer frequency resolution.

The results of the hill-order identification are shown in Figs. 6.2-6.6.

The individual entries of the estimated matrices were compared to those of

the original matrices and the results are shown in Figs. 6.2-6.4. The SSID

algorithm successfully identified the mass, damping, and stiffness matrices of

the original structure to within 0.25%. The undamped natural frequencies were

computed from the identified mass and stiffness matrices, and all 52 natural

frequencies of the original structure were identified to within 8-digit accuracy.

Figure 6.5 is a comparison between the exact drive point FRF at node 4 and

one synthesized using the resulting identified M, C, and K matrices; Fig. 6.6

shows the difference between the two FRFs.

6.2.2 Identification of Reduced-Order Models

In the previous simulation, the SSID algorithm was successfully able

to identify the system matrices of the full-order 52 degree of freedom model
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when all of the modes of the system were included. In a test environment, this

would require response measurements at all 52 degrees of freedom, including

the rotational degrees of freedom. However, it is impractical and impossible to

measure the response of all of the degrees of freedom of a continuous structure.

Therefore, spatial truncation is inevitable.

The following simulations demonstrate the ability of the SSID algo-

rithm to predict the dynamic characteristics of a structure when only a limited

number of accelerometers, or other appropriate output devices, are available.

The resulting identified model is referred to as a reduced-order model. Three

different reduced-order models where used in the simulations. The number

of degrees of freedom, or measurement locations, used for the reduced-order

models was 10, 12 and 16 degrees of freedom.

It is desired that the reduced-order models be able to represent the

target modes of interest. The target modes to be identified are the rigid-body

modes and other "global" modes of the structure (i.e., modes where localized

bending predominates or where rotational DOFs predominate are excluded).

These modes are indicated by an asterisk in Table 6.1. Note that the target

modes are not just the lowest consecutive modes of the system, but are modes

which are spaced throughout the spectrum.

The Effective Interface method [66] was used for the process of se-

lecting which degrees of freedom were to be 'hneasured," or retained, during

the numerical simulations. The Effective Interface Method is an iterative sen-

sor placement process that maximizes the observability of the target modes

by maximizing the determinant of the Fisher information matrix. The Fisher
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information matrix is formed by

(6.1)

where _ are the target modes partitioned to the retained degrees of freedom.

The method examines the effect that the removal of each degree of freedom

would have on the Fisher information matrix and removes one degree of freedom

at a time. Table 6.2 summarizes the nodes selected by the Effective Interface

Method for use as response locations for the three different reduced-order model

sizes. In each case, the Effective Interface Method selected the Z-translational

degree of freedom at the nodes listed in Table 6.2.

Table 6.2: Reduced-Order Model Measurement Sensor Locations

Model Size Measurement Locations

10 1, 2, 3, 4, 5, 6, 7, 8, 17, 18

12 1, 4, 5, 8, 11, 12, 13, 14, 15, 16, 17, 18

16 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18

6.2.3 Effect of Input Frequency Spectrum on the SSID Algorithm

For each of the reduced-order models, three different input frequency

ranges were used to generate test data. This was done to determine how the

SSID algorithm handles residual information. As was mentioned previously,

the identified model depends on the frequency range. For each model size,

better results can be obtained by adjusting the frequency range until the best

frequency range is found. In a test environment, the "best" frequency range

is unknown, so three input frequency ranges were arbitrarily selected. The

different frequency ranges are summarized in Table 6.3. For each frequency
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range, the frequency lines are equally spaced between the minimum frequency

and the maximum frequency. The third input frequency range uses 1024 fre-

quency lines instead of 512 since the frequency spacing using 512 would have

been approximately 4 Hz and was considered too large to identify modes space

2-3 Hz apart, which modes 21-22 and 29-30 are.

Table 6.3: Input Frequency Spectrums

Minimum Maximum Number of

Number Frequency (Hz) Frequency (Hz) Frequency Lines

1 1 300 512

2 1 650 512

3 1 2100 1024

Af

(Hz)
0.584

1.267

2.050

Table 6.4 compares the estimated undamped natural frequencies of

the 10-DOF model for the different input frequency ranges. The estimated

damping factors are given in Table 6.5. The damping factors are computed

from the solution of the state space eigenproblem of Eq. 3.12. For the 10-DOF

model, the best results are obtained for the frequency range of 1-300 Hz, which

encompasses the first nine modes of the original system. As the maximum

frequency is increased to include more modes, the resulting models tend to

overestimate the natural frequencies and do a much poorer job estimating the

damping factors, especially the lowest one.

The resulting drive-point FRFs at node 4 from each 10-DOF model

are shown in Figure 6.7. For the input frequency range of 1-300 Hz, the

estimated response is almost identical to that of the response of the original 52

degree of freedom model. The response of the identified model corresponding

to the other two input frequency ranges overestimates the response near the
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first mode. This is presumably caused by response of the higher modes, which

the 10-DOF model is unable to represent. The 10-DOF model is trying to

'Tit" the response of the higher modes and thus overestimates near the first

mode. Additionally, these two models do not estimate the amplitude of the

true response near the resonances and anti-resonances as well as the first case

does.

In the FRF comparisons included in this report, the damping matrix

used to form the synthesized FRFs was identified from the appropriate parti-

tion of Aa in Equation 3.15. Another damping matrix could also be formed by

using the estimated damping factors and the real normal modes from the iden-

tiffed mass and stiffness matrices. For a given identified model, this "modal"

damping matrix generally overestimated the response at high frequencies while

the identified damping matrix from Eq. 3.15 underestimates the response. A

representative example is shown in Figure 6.8.

To determine how the identified eigenvectors relate to the original

ones, the Modal Assurance Criteria (MAC) [5] was computed. The MAC is

not a true orthogonality check but is a scalar quantity that indicates the degree

of independence between two mode shapes. The first 30 exact eigenvectors were

partitioned to the retained degrees of freedom and compared to the eigenvectors

obtained from the eigensolution of the identified mass and stiffness matrices.

For all three 10-DOF models, the identified eigenvectors had MAC values of

0.99 or greater for the corresponding target mode and values of less than 0.05

for the remaining eigenvectors.

The estimated undamped natural frequencies and damping factors
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Table 6.4: Estimated Natural Frequencies-- 10-DOF Model vs Input Fre-
quency Spectrum

Exact Fmax=300 Hz Fmax=650 Hz Fmax=2100"Hz
Freq. Freq. Percent Freq. Percent Freq. Percent

(Hz) (Hz) Error (nz) Error (Hz) Error

1.1564 1.1552 1.116e-01 1.1301 2.281e+00 1.1453 9.633e-01

606.42 6.0647 6.755e--03 6.0648 9.276e-03 6.0786 2.359e-01

10.783 10.784 7.202e--03 10.956 1.604ed-00 10.924 1.305e-}-00

18.127 18.126 5.608e--03 18.133 3.268e-02 18.462 1.850e+00

109.49 109.49 3.624e-03 109.60 1.032e--01 109.44 4.352e-02

127.14 127.12 1.203e--02 127.02 9.223e-02 128.04 7.052e-01

137.82 137.83 4.228e--03 137.84 1.609e-02 137.73 6.875e--02

156.87 156.87 1.263e--03 156.78 5.782e--02 156.88 7.647e-03

297.66 297.52 4.736e--02 296.70 3.230e-01 308.08 3.502e+00

304.47 303.74 2.376e--01 304.12 1.127e--01 309.89 1.781e+00

Table 6.5: Estimated Damping Factors -- 10-DOF Model vs Input Frequency

Spectrum

Exact Fmax=300 Hz Fmax--650 Hz Fmax--2100 Hz

Damp. Damp. Percent Damp. Percent Damp. Percent

Ratio Ratio Error Ratio Error Ratio Error

0.02 0.01974 1.291e+00 0.02674 3.369e+01 0.04127 1.063e+02

0.02 0.01987 6.368e-01 0.01902 4.921e+00 0.09362 3.681e÷02

0.02 0.01895 5.240e+00 0.01163 4.183e+01 0.06398 2.199e+02

0.02 0.01971 1.469e+00 0.01919 4.028e+00 0.07168 2.584e+02

0.02 0.02000 1.109e--02 0.02010 5.074e-01 0.02017 8.340e-01

0.02 0.01992 3.767e--01 0.01951 2.458e+00

0.02 0.02000 1.677e-02 0.01992 3.855e--01

0.02 0.01997 1.290e-01 0.02034 1.724e+00

0.02 0.01994 2.949e--01 0.02227 1.133e+01

0.02 0.01970 0.020331.474e+00 1.644e+00

0.02673 3.367e+01

0.02126 6.288e+00

0.02180 9.002e+00

0.00683 6.587e+01

0.00714 6.432e+01
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of the 12-DOF model for the different input frequency ranges are listed in

Tables 6.6 and 6.7. The corresponding FRFs are shown in Figure 6.9. For the

12-DOF model, the best results are obtained for the frequency ranges 1-300 Hz

and 1-650 Hz. Note that the model corresponding to the input frequency range

of 1-300 Hz was able to correctly estimate the system's response for modes 11

and 12 even though they are above the 300 Hz upper limit of the FRF data.

The synthesized FKFs for these two models match very closely to those of the

exact response, except near the response of the 12th mode. Here, the model

corresponding to the first frequency range underestimates the response while

the model corresponding to the 2nd input frequency range overestimates the

magnitude of the response.

The identified model corresponding to the third input frequency range,

which includes all 16 target modes, overestimates the llth and 12th natural

frequencies and also does a much poorer job of estimating the damping factors.

Again, the response of this model overestimates the response around the first

mode and does a much poorer job of estimating response near the resonances

and anti-resonances than do the models corresponding to the first two input

frequency ranges. MAC values were also computed for the 12-DOF models

with the same results as before, that is, near-perfect correlation between the

identified modes and the target FEM modes.

The estimated undamped natural frequencies and damping factors of

the 16-DOF model for the different input frequency spectrums are listed in

Tables 6.8 and 6.9, and the corresponding FRFs are shown in Figure 6.10. For

the first 10 natural frequencies and damping factors, the identified model corre_
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Table 6.6: Estimated Natural Frequencies-- 12-DOF Model vs Input Fre-
quencySpectrum

Exact Fmax=300 Hz Fmax=650 Hz Fmax=2100 Hz

Freq. Freq. Percent Freq. Percent Freq. Percent

(nz) (Hz) Error (Hz) Error (Hz) Error

1.1564 1.1564 1.465e-03 1.1563 1.560e--02 1.1577 1.073e-01

6.0642 6.0642 3.454e-05 6.0643 6.787e--04 6.0620 3.767e--02

10.783 10.783 8.332e--06 10.783 2.530e-03 10.785 1.427e-02

18.127 18.127 1.780e-06 18.127 2.632e-03 18.112 7.970e--02

109.49 109.49 5.694e-04 109.49 2.860e--03 109.54 4.36fie--02

127.14 127.14 1.377e-04 127.19 4.276e--02 127.30 1.261e--01

137.82 137.82 7.153e--05 137.82 7.165e--04 137.83 5.248e-03

156.87 156.86 8.364e--05 156.86 7.59fie--03 156.87 4.080e--03

297.66 296.64 6.828e--03 296.99 2.239e--01 299.29 5.461e--01

304.47 304.58 3.859e--02 304.41 1.833e-02 305.56 3.598e-01

606.45 602.08 7.211e--01 605.93 8.683e--02 616.79 1.704e+00

631.08 614.86 2.570e+00 609.92 3.353e+00 643.57 1.979e+00

sponding to the 1-300 Hz input frequency range performed the best. However,

this model does not estimate the last four natural frequencies and damping val-

ues very well. As shown by the MAC values in Table 6.10, the last two modes

do not correspond to the any of the target modes. The poor estimation of the

higher frequencies is also indicated in the corresponding synthesized FRF in

Figure 6.10.

The 16-DOF model corresponding to the second input frequency spec-

trum estimates the first 12 frequencies very well. However, this model also

identifies a frequency at 582.31 Hz, which agrees well with the 15th mode of

the original 52 degrees of freedom model. This mode shape is similar to the

2nd anti-symmetric bending mode of the structure, mode 9, except that the

maximum displacement in the mode shape occurs in the X-rotational degree of
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Table 6.7: Estimated Damping Factors-- 12-DOF Model vs Input Frequency
Spectrum

Exact Fmax=300 Hz Fmax=650 Hz Fmax=2100 Hz
Damp. Damp. Percent Damp. Percent Damp. Percent
Ratio Ratio Error Ratio Error Ratio Error

0.02 0.02000 9.909e--03 0.02006 2.965e-01 0.01782 1.088e+01

0.02 0.02000 2.023e-03 0.01995 2.550e-01 0.01854 7.309e+00

0.02 0.02000 4.948e-03 0.02025 1.257e+00 0.01558 2.209e+01

0.02 0.02000 9.197e--04 0.01936 3.193e+00 0.01929 3.524e+00

0.02 0.02000 1.234e-02 0.02003 1.563e-01 0.01985 7.721e-01

0.02 0.02000 6.847e--03 0.02012 6.068e-01 0.01855 7.255e+00

0.02 0.02000 1.396e-03 0.01999 4.555e-02 0.01982 8.789e-01

0.02 0.02000 5.182e--03 0.02000 4.095e-03 0.02000 5.835e-03

0.02 0.01999 7.062e-02 0.01982 8.829e-01 0.03171 5.855e+01

0.02 0.02004 2.125e-01 0.01989 5.649e-01 0.02753 3.764e+01

0.02 0.02003 1.565e-01 0.01979 1.029e+00 0.01807 9.641e+00

0.02 0.02003 1.735e-01 0.02774 0.022863.869e+01 1.432e+01

freedom at nodes 9, 10, 17, and 18. The inclusion of this mode is the suspected

reason for the error in the estimation of the last 4 natural frequencies and for

the error in the synthesized FRF for frequencies greater than 700 Hz.

The identified model corresponding to the input frequency range of

1-2100 Hz represents the dynamic characteristics of the original structure the

best overall. All 16 natural frequencies are identified to within 1.0% and all of

the MAC values are near unity for the corresponding target modes and less than

0.05 for the remaining ones. The synthesized FRF matches the exact response

almost exactly, except at very high frequencies, where it underestimates the

magnitude of the true response.

As indicated by the preceding simulations, the SSID-identified ma-
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trices are frequency-dependent.The best estimation of a given model order

is when the input frequencyrangecontainsonly the correspondingnumber of

modes. For this reason,in the remaining simulations, the 10-DOF model was

estimatedusingthe first input frequencyspectrum,the secondinput frequency

range wasusedto estimate the 12-DOF model, and the 1-2100 Hz input fre-

quencyspectrum wasusedto estimate the 16-DOF model.

Table 6.8: Estimated Natural Frequencies-- 16-DOF Model vs Input Fre-
quencySpectrum

Exact Fmax=300 Hz Fmax----650Hz Fmax--2100 Hz
Freq. Freq. Percent Freq. Percent Freq. Percent
(Hz) (Hz) Error (Hz) Error (Hz) Error

1.1564 1.1564 5.902e-05 1.1564 6.472e-03 1.1507 4.948e-01

6.0642 6.0642 3.468e--06 6.0642 4.260e--06 6.0628 2.430e-02

10.783 10.783 3.174e-08 10.794 1.013e-01 10.807 2.165e-01

18.127 18.127 3.659e-08 18.124 1.280e-02 18.115 6.439e--02

109.49 109.49 1.992e-05 109.48 5.737e--03 109.49 1.539e-03

127.14 127.14 1.238e--07 127.16 1.745e--02 127.15 7.669e-4)3

137.82 137.82 2.793e--05 137.82 2.366e-4)4 137.82 2.866e--03

156.87 156.87 4.226e--05 156.86 4.682e-03 156.86 5.341e--03

297.66 297.66 1.745e-06 296.70 3.218e-01 297.61 1.796e-02

304.47 304.47 2.041e-05 304.47 7.440e--04 304.41 1.745e-02

606.45 606.15 5.092e-02 582.31 -- 606.24 3.595e-02

631.08 613.54 2.779e+00 606.53 1.319e-02 626.89 6.648e-01

1190.4 1047.1 1.204e+01 625.76 8.430e-01 1189.4 8.538e-02

1193.3 1159.3 2.852e+00 1023.9 1.399e÷01 1192.3 8.922e-02

2029.1 1526.7 2.476e÷01 1154.6 3.243e+00 2017.0 5.990e-01

2031.2 1682.3 1.718e+01 1773.3 1.261e÷01 2017.6 6.686e-01

For each of the reduced-order models, a '_pseudo" drive-point FRF

was estimated and compared to the original model. Using the identified system

matrices, a drive-point FRF was estimated even though no force was actually
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Table 6.9: Estimated Damping Factors-- 16-DOFModel vs Input Frequency
Spectrum

Exact Fmax=300 Hz Fmax=650 Hz Fmax=2100 I-Iz
Damp. Damp. Percent Damp. Percent Damp. Percent
Ratio Ratio Error Ratio Error Ratio Error

0.02 0.02000 4.237e-04 0.01997 1.263e-01 0.01980 1.022e+00

0.02 0.02000 4.263e-05 0.02000 7.409e-03 0.02104 5.179e+00

0.02 0.02000 3.668e-06 0.01859 7.034e+00 0.01824 8.789e+00

0.02 0.02000 6.994e-06 0.01893 5.333e+00 0.02055 2.754e+00

0.02 0.02000 7.646e--04 0.01999 6.403e-02 0.02009 4.696e-01

0.02 0.02000 3.306e-06 0.01884 5.778e+00 0.01882 5.911e+00

0.02 0.02000 8.368e--05 0.02000 4.057e-03 0.01993 3.678e-01

0.02 0.02000 5.035e-04 0.01999 6.897e-02 0.01993 3.481e--01

0.02 0.02000 1.471e--O4 0.01966 1.682e+00 "0.02157 7.847e+00

0.02 0.02000 2.i41e--04 0.02000 1.538e-03 0.01980 9.997e-01

0.02 0.02000 2.160e--02 0.02089 4.473e+00 0.02018 8.870e-01

0.02 0.01996 2.145e--0i 0.02002 1.099e-01 0.02593 2.964e+01

0.02 0.01775 1.126e+01 0.02698 3.492e+01 0.02031 1.552e+00

0.02 0.02034 1.185e+00 0.02041 2.049e+00 0.01923 3.830e+00

0.02 0.02135 6.742e÷00 0.02017 8.743e-01 0.01549 2.257e+01

0.02 0.02094 4.685e+00 0.02716 3.580e+01 0.01571 2.I45e+01
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Table 6.10: Maximum MAC Values for 16-DOF Model vs Input Frequency

Spectrum

Fmax=300 Hz Fmax=650 Hz Fmax=2100 Hz

TAM FEM Max FEM Max FEM Max

Mode Mode MAC Mode MAC Mode MAC

1 1 1.0000 1 1.0000 1 1.0000

2 2 1.0000 2 1.0000 2 1.0000

3 3 1.0000 3 1.0000 3 1.0000

4 4 1.0000 4 1.0000 4 1.0000

5 5 1.0000 5 1.0000 5 1.0000

6 6 1.0000 6 1.0000 6 1.0000

7 7 1.0000 7 1.0000 7 1.0000

8 8 1.0000 8 1.0000 8 1.0000

9 9 1.0000 9 1.0000 9 1.0000

10 10 1.0000 10 1.0000 10 1.0000

11 18 0.9987 15 0.8721 17 1.0000

12 17 0.9344 17 1.0000 18 0.9970

13 20 0.6239 18 0.9552 21 0.9999

14 21 0.6639 28 0.6244 22 0.9999

15 32 0.7196 21 0.8891 30 0.9999

16 27 0.6063 27 0.3830 29 0.9992
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applied at the degree of freedom during the identification of the model. The

results of the comparisons are shown in Figures 6.11-6.13. As can been seen,

good agreement is obtained between the estimated and the exact pseudo drive-

point FRF. This suggests that interface information could possibly be obtained

without applying a force or measuring a reaction force at the interface degrees

of freedom.

6.2.4 Effect of Noise on the SSID Algorithm

In the simulations presented in the Section 6.2.1 through 6.2.3, the

exact 52-DOF FRF data was used. The only "errors" that were introduced

in the SSID processing of the exact FRF data was due to spatial and/or fre-

quency truncation of the measured data. However, measured FRF data always

contains some type of random error, or noise. The noise, for example, could

be due to transducer error, signal processing and conditioning error, or other

errors and uncertainties present in the measurement process. Therefore, for

an identification algorithm to be applicable to test data, it must be robust

enough to handle less than perfect data. The main concern of the simulations

presented in this section is the numerical stability of the SSID algorithm in the

presence of noise.

The noise added to the simulated FlZF data was uniformly distributed,

pure random, and zero mean. A noise level of 2% was used in the simulations in

this study. The noise level is the percent of the root-mean-square (tLMS) value

of the random noise to the RMS value of the noise free-signal. Acceleration is

usually measured as the output of the structure, so the magnitude of the noise
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is proportional to the magnitude of each accelerance FRF spectrum, not the

receptance frequency response. A random phase error was also introduced; the

maximum error on the phase was 2 °. A typical 'fimeasured" response is shown

in Figure 6.14. To reduce the effect of the noise, signal averaging was used,

just as averaging would be employed in an actual test. The measured FRFs

were averaged over 40 samples.

The three least squares methods discussed in the previous Chapter

were used to solve the over-determined system of equations, Eq. 3.7. No accept-

able solution for any of the reduced-order models was ever obtained using the

ordinary least squares method. The standard MATLAB least squares solver,

which performs a Q-R decomposition, was used to solve the over-determined

system of equations. The resulting identified system matrices were not positive

definite, and typically yielded complex estimates for the undamped natural fre-

quencies. Increasing the number of averages did not significantly improve the

resulting solution. Figure 6.15 is a representative least squares solution and

estimation of the drive-point FRF. This result indicates that in the implemen-

tation of the SSID algorithm for use in test environments, a TLS solver will be

necessary.

A comparison of the estimations resulting from the different methods

of solution for the 10-DOF model are shown Tables 6.11 and 6.12. Except for

the first and the last mode, both methods of solution predict the undamped

natural frequencies to within 1%. The STLS method gives slightly more accu-

rate results, which is to be expected. For the 1st mode, which is where the noise

affects the signal the most, the STLS estimation is much more accurate than
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the TLS estimation. However,the STLS method doesnot accuratelyestimate

the damping factorsfor the last threemodes.

The correspondingFRFs areshownin Figure 6.16.Again, both meth-

ods of solution predict the responseof the structure very well. The STLS

method performs better than the TLS method in the low frequency response,

while the TLS solution is more accurate than the STLS solution at higher fre-

quencies. The TLS solution also overestimates the response near resonance for

modes 4 and 5.

Table 6.11: Estimated Natural Frequencies -- 10-DOF Model vs Solution

Method

Exact Noise Free TLS STLS

Freq. Freq. Percent Freq. Percent Freq. Percent

(Hz) (Hz) Error (Hz) Error (Hz) Error

1.1564 1.1552 1.116e--01 1.3706 1.852e%01 1.1795 1.989e+00

6.0642 6.0647 6.755e-03 1.969e--02 6.0633 1.639e-02

10.783 10.784 7.202e-03

6.0654

10.799 1.434e-01 10.780 2.786e-02

18.127 18.126 5.608e--03 18.139 6.756e--02 18.118 4.946e-02

109.49 109.49 3.624e-03 109.54 4.068e-02 109.55 5.016e--02

127.14 127.12 1.203e-02 127.01 1.040e-01 127.05 7.012e-02

137.82 137.83 4.228e--03 137.85 2.018e--02 137.85 1.861e-02

156.87 156.87 1.263e--03 157.19 2.003e-01 157.33 2.947e--01

297.66 297.52 4.736e--02 299.96 7.711e-01 299.45 6.012e-01

304.47 303.74 2.376e-01 312.42 2.612e+00 315.90 3.754e+00

Comparisons of the results for the 12-DOF model are shown Ta-

bles 6.13 and 6.14 and in Figure 6.17. The same general trend is observed

in this case as for the 10-DOF model. The STLS method provides a slightly

better estimation of the dynamic characteristics of the original structure than

the TLS solution for the low-frequency response. Both solutions overestimate
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Table6.12: EstimatedDamping Factors-- 10-DOFModel vs Solution Method

Exact NoiseFree TLS STLS
Damp. Damp. Percent Damp. Percent Damp. Percent
Ratio Ratio Error Ratio Error Ratio Error
0.02 0.01974 1.291e+00 0.01700 1.502e+01 0.02018 9.057e-01
0.02 0.01987 6.368e-01 0.01990 4.851e-01 0.01994 3.019e--01
0.02 0.01895 5.240e+00 0.01895 5.226e+00 0.01918 4.099e+00
0.02 0.01971 1.469e+00 0.01967 1.645e+00 0.01978 1.096e+00
0.02 0.02000 1.109e-02 0.01993 3.698e-01 0.01899 5.025e+00

0.02 0.01992 3.767e-01 0.01876 6.221e+00 0.01921 3.956e+00

0.02 0.02000 1.677e-02 0.02057 2.860e+00 0.01988 5.937e--01

0.02 0.01997 1.290e-01 0.02319 1.595e+01 0.02265 1.326e+01

0.02 0.01994 2.949e-01 0.01963 1.841e+00 0.01451 2.744e+01

0.02 0.01970 1.474e+00 0.03474 73.68e+01 0.03621 8.103e+01

the response of the structure for frequencies greater than the input frequency

range of 1-650 Hz.

For the case of the 16-DOF model in the presence of noise, none of

the three solution methods was able to provide an acceptable solution. The

identified system matrices were not positive definite for any of the three meth-

ods of solution. The erroneous solutions are more than likely due to the power

to which the additive noise terms are raised in the frequency-domain equations

of motion. This unsuccessful identification provides support to the claim that

frequency-domain system identification methods work best as narrow-band es-

timation procedures. Further evidence is provided by the successful identifica-

tion employing the band processing approach, the results of which are listed in

Table 6.17.
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Table 6.13: Estimated Natural Frequencies-- 12-DOF Model vs Solution
Method

Exact Noise Free TLS STLS

Freq. Freq. Percent Freq. Percent Freq. Percent

(Hz) (I-Iz) Error (Hz) Error (Hz) Error
1.1564 1.1563 1.560e--02 1.2983 1.226e+01 1.1701 1.182e+00

6.0642 6.0643 6.787e-04 6.0660 2.812e-02 605.85 9.405e-02

10.783 10.783 2.530e-03 10.957 1.605e+00 10.830 4.323e-01

18.127 18.127 2.632e-03 18.761 3.500e+00 18.221 5.221e-01

109.49 109.49 2.860e-03 109.43 5.631e-02 109.46 2.827e-02

127.14 127.19 4.276e--02 127.61 3.710e--01 127.49 2.772e--01

137.82 137.82 7.165e-04 137.70 8.719e--02 137.73 6.834e-02

156.87 156.86 7.596e--03 156.66 1.359e-01 156.71 1.057e-01

297.66 296.99 2.239e--01 291.23 2.160e+00 295.51 7.223e-4)I

304.47 304.41 1.833e-02 304.49 6.377e--03 304.96 1.610e--01

606.45 605.93 8.683e-02 600.29 1.016e+00 603.69 4.558e-01

631.08 609.92 3.353e+00 653.34 3.528e+00 654.15 3.656e+00

Table 6.14: Estimated Damping Factors -- 12-DOF Model vs Solution Method

Exact Noise Free TLS STLS

Damp. Damp. Percent Damp. Percent Damp. Percent

Ratio Ratio Error Ratio Error Ratio Error

0.02 0.02006 2.965e-01 0.01737 1.312e+01 0.02002 9.185e-02

0.02 0.01995 2.550e--01 0.01975 1.225e+00 0.01989 5.410e-01

0.02 0.02025 1.257e+00 0.02139 6.977e+00 0.02225 1.127e+01

0.02 0.01936 3.193e+00 0.01758 1.211e+01 0.01717 1.413e+01

0.02 0.02003 1.563e--01 0.02158 7.932e+00 0.02105 5.268e+00

0.02 0.02012 6.068e--01 0.01935 3.234e+00 0.01856 7.178e+00

0.02 0.01999 4.555e-02 0.02171 8.545e+00 0.02154 7.699e+00

0.02 0.02000 4.095e--03 0.02102 5.094e+00 0.02089 4.474e+00

0.02 0.01982 8.829e--01 0.02975 4.876e+01 0.02880 4.400e+01

0.02 0.01989 5.649e-01 0.02251 1.254e+01 0.02257 1.285e+01

0.02 0.01979 1.029e+00 0.02351 1.754e+01 0.01557 2.215e÷01

0.02 0.02774 3.869e+01 0.06257 2.128e+02 0.06822 2.411e+02
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6.3 Results of Narrow-Band Processing

This section presents the results of simulations where the band pro-

cessing approach described in Section 5.2 was used in the identification proce-

dure. The band processing approach was motivated by the unsuccessful iden-

tification of the 16-DOF model in the previous section. First, the method was

applied to the 16-DOF model using noise-flee data to determine if the idea

would yield valid results. Then the data containing noise was used.

The same simulated FRF data that was used in Section 6.2.3 for the

16-DOF model, with the input frequency spectrum of 1-2100 Hz and 1024

equally spaced frequency lines, is used here. Following the procedure outlined

in Section 5.2, the frequency data was divided into 100-Hz frequency bands with

50-Hz overlap, which results in 41 frequency bands. For each frequency band,

the SSID identification proceeded through the solution of Eq. 3.12. The esti-

mated natural frequencies computed using Eq. 5.19 are plotted in Figures 6.18-

6.19. The vertical lines indicate the target-mode frequencies. Note that even

though each frequency band spans only 100 I-Iz, the frequencies outside of a

given band are also correctly identified. This is true only when noise-free data is

used, as is evident when Figs. 6.18-6.19 and 6.21-6.22 are compared. However,

the out-of-band frequencies will be discarded by virtue of the first selection

criterion listed in Section 5.2. The roots in bands 1, 3, 6, 13, 24, and 40 were

selected as the identified modal parameters, and the remaining portion of the

SSID was then carried out to identify the system matrices.

The three different approaches described in Section 5.2 for solving

Eq. 3.23 were used to solve for the scale factors 5. These approaches are referred
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to as BP1, BP2, and BP3 respectively.The BPI estimates did not yieldpositive

definitesystem matrices and are not included here. The resultsfrom the other

two methods are shown in Tables 6.15 and 6.16 and in Figure 6.20. The BP2

estimate provides the best estimation of the natural frequencies. However,

the BP2 resultstend to overestimate the response at high frequencies,while

the response of BP3 is much closer to the one obtained using the original

SSID formulation. The reason for the overestimation by the BP2 estimate

has yet to be resolved. The estimates of the damping factors are the same

forboth band processing estimations,since the damping factorsare computed

from the same identifiedmodal parameters. The differencebetween BP2 and

BP3 is in the data used in Eq. 3.23 for the estimation of the _ coefficients.

The band processing method estimates the damping factors very well. The

resultsindicate that the modal parameters, Eq. 3.23, can be estimated band

by band, collectedand stored, and then used for the finalestimation of the

system matrices.

The band processing approach was also applied to the noisy data

for the 16 degree of freedom model used in the previous section. Using the

original SSID formulation, no acceptable solution was ever obtained using any

of the three least squares solution methods. The simulated data was divided

into the same 41 frequency bands used in the last example and each band was

processed through Eq. 3.12. The TLS method was used to solve Eq. 3.7. The

estimated natural frequenciesare plotted in Figures 6.21 and 6.22. Notice that

when noise isapplied to the signal,the TLS method triesto fitthe data to the

corresponding frequency band and most of the frequenciesare estimated near

the centerof the band. This resultsin the identificationof many "noisemodes."



83

Table 6.15: Estimated Natural Frequencies -- 16-DOF Noise-Free Model Em-

ploying Band Processing

Exact

Freq.

(m)

SSID

_C 1 •

(m)
Percent

Error

Freq.

(m)

BP2

Percent

Error

Freq.

(m)

BP3

Percent

Error

2029.1

2031.2 2017.6

2.202e-01 606.46 1.323e-03

631.08 626.89 630.17 1.450e-01 629.75 2.110e-01

1190.4 1189.4 8.538e-01 1188.9 1.306e-01 1195.1 3.959e--01

1193.3 1192.3 8.922e-02 1191.1 1.872e-01 1196.4 2.525e-01

2017.0 5.990e-01 2029.0 8.002e--03 2144.5

606.24 3.595e-02

6.648e-01

6.686e--oi

606.45

9.541e--05 18.126 1.658e--03

109.49 109.49 1.539e--03 109.49 3.223e--03 109.49 8.542e-04

127.14 127.15 7.669e-03 127.14 2.056e--03 127.14 1.502e-03

137.82 137.82 2.866e-03 137.81 6.636e-03 13Z81 9.261e-03

156.87 156.86 5.341e-03 156.87 1.868e--03 156.87 4.088e--04

297.66 297.61 1.796e--02 297.26 1.345e--01 297.56 3.264e-02

304.47 304.41 1.745e--02 304.01 1.495e-01 304.50 1.125e--02

605.12

2031.8

18.127 6.439e--02

2.758e-02

18.115

5.683e+00

2171.2 6.893e+00

10.783

i8.127

1.1564 1.1507 4.948e--01 1.1564 2.972e-05 1.1564 1.826e-05

6.0642 6.0628 2.430e--02 6.0642 2.348e--04 6.0642 8.340e-04

10.783 10.807 2.165e-01 1.096e--04 10.783 6.707e--06



84

Table 6.16: Estimated Damping Factors -- 16-DOF Noise-Free Model Employ-

ing Band Processing

Exact SSID BP

Damp. Damp. Percent Damp. Percent

Ratio Ratio Error Ratio Error

0.02 0.01980 1.022e÷00 0.02000 2.688e--08

0.02 0.02104 5.179e-!-00 0.02000 1.833e-06

0.02 0.01824 8.789e-l-00 0.02000 4.289e-09

0.02 0.02055 2.754e-l-00 0.02000 1.311e-09

0.02 0.02009 4.696e-01 0.02000 4.131e-06

0.02 0.01882 5.911e-!-00 0.02000 2.508e-08

0.02 0.01993 3.678e-01 0.02000 7.951e-08

0.02 0.01993 3.481e-01 0.02000 1.177e-07

0.02 0.02157 7.847e-!-00 0.02000 3.463e-06

0.02 0.01980 9.997e--01 0.02000 4.913e-08

0.02 0.02018 8.870e-01 0.02000 1.115e-05

0.02 0.02593 2.964e-t-01 0.02000 2.233e-02

0.02 0.02031 1.552e+00 0.02000 1.140e-03

0.02 0.01923 3.830e-l-00 0.02000 3.208e-05

0.02 0.01549 2.257e+01 0.02000 1.718e-03

0.02 0.01571 2.145e-t-01 0.02000 2.260e--03
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An index of 0.95 was selected as the MPC criterion. Modes with MPC indices

less than this value were rejected as noise modes. After application of the four

selection criteria listed in Section 5.2, the selected roots are again plotted, as

shown in Figures 6.23 and 6.24.

The results of the identification are shown in Table 6.17 and in Fig-

ure 6.25. The results are very encouraging, especially since no acceptable result

was previously obtained using this same noisy data. As before, the BP2 solu-

tion provides a better estimate of the natural frequencies. The high-frequency

response of the BP2 estimation is an overestimation of the true response, while

the low-frequency response of the BP3 estimate is an underestimation of the

exact response.

Table 6.17: Estimated Modal Parameters m 16-DOF Model Employing Band

Processing with Noisy Data

Exact

Freq.
(Hz)

1.1564
6.0642

10.783
18.127
109.49
127.14
137.82

156.87
297.66
304.47

606.45
631.08
1190.4
1193.3
2029.11

2031.2

BP2

Freq. Percent
(Hz) Error

1.1435 l.l16e+O0
6.0579 1.054e-4)I

10.784 6.916e-03
18.132 2.896e--if2
109.51 1.70oe--02
127.24 7.661e--02

137.82 4.082e-04
156.85 1.089e-02
297.68 5.516e-03

304.39 2.448e-02
606.72 4.421e--02
630.93 2.382e--02
1191.1 5.44_-02

1193.1 2._50e--02
2015.9 6.522e-01

2031.8 2.709e-02

BP3

Freq. [ Percent
(Hz) Error

1.4273 ] 2.342e+01

6.1922 [ 2.110e-_0
12.a_8 l 1.62_+01
19.005 [ 4.846e+0O
109.51[ 1.989e-02
127.39 ] 2.013e-01
137.so] 1.e42_
156.87 ] 9.918e-04
297.92 ] 8.773e-02
304.04 [ 1.4158--01

606.75 I 4.916e-02
631.76 I 1.073e-01
1186.1 I 3.625e--01
1192.0 ] 1.118e-01
2015.51 6.693e-01
2054.4 [ 1.141e+00

|

Exact
Damp.
Ratio

I

0.02
0.021

o.o21
0.02

0.02
0.02
0.02

0.02
0.02
0.02

0.02
0.02
0.02
0.02

0.02
0.02

BP

Damp. Percent
Ratio Error

0.00764 6.178e+01
0.02016 7.789e-01

0.02046 2.296e+00
0.02143 7.152e-{-00
0.01880 5.98`%+00
0.01977 1.168e+00
0.02009 4.474e--01
0.01996 1.836e-01

0.01987 6.248e-01
0.01975 1.239e+00

0.02058 2.911e+00
0.01957 2.14,%+00
0.02004 1.824e-01
0.02000 1.637e-02
0.01864 6.796e+00
0.01896 5.213e+00
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The band processing technique was also applied to the remaining two

reduced-order models using noisy data. Figures 6.26 and 6.27 show the com-

parisons of a drive-pointFRF foreach of the reduced-order models. The data

used for the 12-DOF model was divided into 12 overlapping 100-Hz frequency

bands. The resultsare similarto those obtained using the 16-DOF model. In

order for the BP2 estimation to yield acceptable results,the 1 Hz data point

was omitted. This would be similarto ignoring data with very low coherence

values. The low frequency data isstillseverely corrupted by noise,even after

sufficientaveraging, and includingthispoint in the BP2 estimation introduced

large errors into the estimated frequency response.

For the 10-DOF model, the BP2 estimation of the response is in seri-

ous error, as indicated in Figure 6.27. For this model, the simulated data was

split into 50-Hz frequency bands with 25-Hz overlap, resulting in 11 frequency

bands. The reason for the error in the BP2 estimation is unknown. However,

it is possible that the model is too small for use with the band processing

technique or the frequency bands may too narrow. More research is needed

to determine the width and the number of frequency bands to use for a given

model order. The use or development of additional modal quality indicators

should also be addressed to help identify and confirm the estimated structural

modes. Also, coherence blanking or other measures might be useful in select-

ing FRF data, or FRFs might be obtained by employing stepped sine-dwell

processing.
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6.4 Pseudo Degrees of Freedom

This section presents the results of augmenting the model order using

pseudo degrees of freedom (PDF). For this simulation, the 10-DOF model was

used and the the input frequency range was 1-2100 Hz with 1024 equally space

frequency lines. Using the pseudo degrees of freedom, the model order was

expanded to create a 20-DOF pseudo-degree-of-freedom model, and the iden-

tification process through Eq. 3.12 was completed. As mentioned in Section

5.3, the remaining portion of the identification has yet to be defined for pseudo

degrees of freedom. No noise was added to the data. Table 6.18 gives a listing

of the estimated frequencies from the solution of Eq. 3.12 and compares those

to the frequencies obtained using only the original ten degrees of freedom.

Table 6.18: Identified Natural Frequencies Using Pseudo Degrees of Freedom

Pseudo DOF Model Original Model

Mode Freq. Mode Freq. Mode Freq.

Number (Hz) Number (Hz) Number (Hz)

1 1.1026 11 304.24 1 1.1454

2 6.0572 12 463.91 2 6.0878

3 10.387 13 497.10 3 10.989

4 18.063 14 1189.8 4 18.293

5 109.50 15 1193.2 5 109.52

6 128.19 16 1675.1 6 127.75

7 137.82 17 1686.4 7 137.81

8 156.89 18 1713.0 8 156.99

9 271.10 19 2029.5 9 308.15

10 297.17 20 2031.6 10 311.36

Using the original 10 degrees of freedom, only the lowest 10 modes

could be identified even though more are present in the data. When the order
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of the model is expandedby useof pseudodegreesof freedom, the model is

able to identify 4 additional target modes, modes 21, 22, 29, and 30, plus

someadditional computational modes. Somesort of modal quality indicator

is needed to distinguish between the physical and computational modes of the

PDF model. This approach doubles the model order. In some instances, this

may be too large and the model order may need to be decreased from twice

the original size. A reduction step would then be required to determine the

appropriate model order. The initial results are encouraging, since some of the

higher frequencies can be identified using the pseudo degrees of freedom.

The mode shapes from the PDF model are listed in Tables 6.19

and 6.20. The mode shapes listed here are the normal modes of the PDF

model. They are obtained by solving the algebraic eigenvalue problem using

f4 = M-1K, which is obtained from the solution of Equation. 3.7. Note that

for the lower frequency modes, the mode shape appears in the lower-frequency

partition of the mode shape and the higher frequency mode shapes appear in

the high-frequency partition, or in the pseudo degrees of freedom. The pseudo

degrees of freedom could possibly be treated as generalized coordinates and

then the SSID algorithm could proceed with the identification of the system

matrices.
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Table 6.19: Mode Shapesof the 10-DOF Model Employing PseudoDegreeof
Freedom- Modes 1 through 10

Mode Mode Mode Mode Mode Mode Mode Mode Mode Mode

1 2 3 4 5 6 7 8 9 l0

1.000 -0.997 -0.967 1.000 -0.274 -0.996 -0.058 -0.294 0.483 -1.000

0.998 -0.339 -1.000 0.339 0.215 0.558 -0.037 0.127 -0.319 0.694

0.996 0.292 -1.000 -0.305 0.215 0.557 0.041 0.127 0.216 -0.716

0.994 0.951 -0.968 -0.967 -0.274 -1.000 0.057 -0.294 -0.908 0.919

1.000 -0.997 0.967 -1.000 -0.274 0.996 -0.058 -0.294 0.483 1.000

0.998 -0.339 1.000 -0.339 0.215 -0.558 -0.037 0.127 -0.319 -0.694

0.996 0.292 1.000 0.305 0.215 -0.557 0.041 0.127 0.216 0.716

0.994 0.951 0.968 0.967 -0.274 1.000 0.057 -0.294 -0.908 -0.919

0.994 0.954 0.000 0.000 -1.000 0.000 -0.981 1.000 0.751 0.000

1.000 -1.000 0.000 0.000 -0.999 0.000 1.000 0.999 -0.465 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.036 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.036 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 0.000
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Table 6.20: Mode Shapes of the IO-DOF Model Employing Pseudo Degree of

Freedom - Modes 11 through 20

Mode Mode Mode Mode Mode Mode Mode Mode Mode Mode

11 12 13 14 15 16 17 18 19 20

-1.000 0.240 -0.866 -0.079 -0.054 1.030 -0.095 0.095 -0.042 0.018

0.650 -1.030 -1.000 -0.042 -0.030 0.695 -0.032 0.032 -0.007 0.047

-0.672 0.760 0.367 -0.023 -0.020 -0.147 -0.046 0.046 -0.037 -0.047

0.938 -0.814 -0.830 -0.070 -0.086 0.839 -0.087 0.087 -0.055 -0.013

-1.000 -0.240 -0.866 -0.079 0.054 -1.000 -0.095 0.095 -0.042 -0.018

0.650 1.000 -1.000 -0.042 0.030 -0.695 -0.032 0.032 -0.007 -0.047

-0.672 -0.760 0.367 -0.023 0.020 0.147 -0.046 0.046 -0.037 0.047

0.938 0.814 -0.830 -0.070 0.086 -0.839 -0.087 0.087 -0.055 0.013

-0.511 0.000 0.282 0.018 0.000 0.000 0.074 -0.074 0.019 0.000

0.542 0.000 0.317 0.020 0.000 0.030 -0.006 0.006 0.006 0.000

0.030 0.062 0.015 -0.371 -0.384 0.028 -0.158 0.158 0.420 0.439

0.030 0.080 0.034 -1.000 -1.000 -0.054 -0.080 0.080 0.995 0.995
'0.030 -0.0?? -0.032 0.999 1.000 0.050 0.063 -0.063 1.000 1.000

-0.001 0.901 0.446 0.375 0.384 -0.115 0.186 -0.186 0.436 0.428

0.000 -0.062 0.015 -0.371 0.384 -0.028 -0.158 0.158 0.420 -0.439

"0.000 °0.080 0.034 -1.000 1.000 0.054 -0.080 0.080 0.995 -0.995

0.030 0.077 -0.032 0.999 -1.000 -0.050 0.063 -0.063 1.000 -1.000

-0.001 -0.901 0.446 0.3?5 -0.384 0.115 0.186 -0.186 0.436 -0.428

0.000 0.000 -0.115 -0.096 0.000 0.030 1.003 -1.000 -0.061 0.000

0.011 0.000 0.289 0.100 0.000 0.000 -0.846 0.846 -0.158 0.000
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6.5 Comparison of SSID-Identified Models with Exist-

ing TAMs

In this section, the SSID-identified reduced-order models are com-

pared to three of the TAM models discussed in Chapter 4: the Guyan model,

the Improved Reduction System (IRS) model, and the Craig-Bampton (C-B)

model in physical coordinates. The appropriate fixed-interface normal modes

for use in the C-B models were selected using the technique described in Section

4.4.2. For each TAM, the estimated natural frequencies and the prediction of

the dynamic response are compared for each of the reduced-order model sizes,

10, 12, and 16 degrees of freedom. Orthogonality and cross-orthogonality checks

were performed using each TAM, and very good results were found for each

TAM, with diagonal values near unity and off-diagonal terms less than 0.1.

Tables 6.21 through 6.23 list the estimated undamped natural fre-

quencies for each of the reduced-order model sizes. Except for the very lowest

frequencies, the SSID reduced-order models generally provide a better estima-

tion of the natural frequencies than does the Guyan reduction method. The

IRS and C-B models also estimate the lower natural frequencies better than

the do SSID models. However, for the middle and higher frequencies of each

model size, the SSID-identified model performs as well, if not slightly better,

than these other two TAMs.

A comparison of the estimated FRFs for each of the model sizes is

given in Figures 6.28--6.30. The physical damping matrix used for each of the

TAMs was computed by using the real normal modes estimated by each model

and the damping factors estimated by the SSID algorithm for the corresponding



92

model size and computing a modal damping matrix. As shown in the figures,

all four methods represent the dynamic response of the original 52-DOF model

very well.

Table 6.21:

SSID

Freq. Percent

(Hz) Error
1.1552 1.116e-01

6.0647 6.755e-03

10.784 7.202e-03

18.126 5.608e-03

109.49 3.624e-03

127.12 1.203e-02

137.83 4.228e-03

156.87 1.263e-03

297.52 4.T36e-02

303.74 2.376e-01

Estimated Natural Frequencies- 10-DOF TAMs

Guyan IRS C-B

Freq. Percent Freq. Percent Freq. Percent

(Hz) Error (I-!z) Error (Hz) Error
1.1564 1.100e-04 1.1564 3.834e-08 1.1564 2.352e-06

6.0644 2.576e-03 6.0642 1.064e-09 6.0643 1.660e-04

10.785 1.004e-02 10.783 1.411e-09 10.783 3.144e-04

18.132 2.629e-02 18.127 2.559e-09 18.127 2.187e-03

109.56 6.129e---02 109.49 1.043e---05 109.52 2.261e---02

127.46 2.558e--01 127.14 3.2"21e--04 127.32 1.4(g)e--O1

138.08 1.866e-01 137.82 3.570e-05 137.83 5.044e-03

157.25 2.436e-01 156.87 9.836e-04 157.06 1.194e-01

309.83 4.087e+00 297.82 5.248e--02 300.04 7.981e-01

314.79 3.392e+00 304.51 1.368e-02 306.30 6.034e-01

Table 6.22: Estimated Natural Frequendes I 12-DOF TAMs

SSID Guyan IRS C-B

Freq. Percent Freq. Percent Freq. Percent Freq. Percent

(Hz) Error (Hz) Error (Hz) Error (Hz) Error
1.1563 1.560e--02 1.1564 4.802e-06 1.1564 3.876e--08 1.1564 4.419e-07

6.0643 6.787e--04 6.0643 8.648e--05 6.0642 1.052e-09 6.0642 2.380e--05

10.783 2.530e-(k3 10.783 6.218e--04 10.783 7.343e-10 10.783 2.519e--04

18.127 2.632e-03 18.127 2.137e-03 18.127 1.610e--09 18.127 1.752e--03

109.49 2.860e-03 109.55 5.700e--02 109.49 5,814e--06 109.50 5.780e--03

127.19 4.276e-02 127.40 2.055e-01 127.14 1.957e-04 127.28 1.120e-Ol

137.82 7.165e-04 137.84 1.035e--02 137.82 9.817e--07 137.83 4.813e-03

156.86 7.596e-03 157.01 8.613e--02 156.87 3.12Ae--05 156.90 1.518e-02

296.99 2.239e--01 301.40 1.257e+00 297.76 3.218e-02 299.54 6.327e-01
304.41 1.833e-02 306.93 8.094e--01 304.48 3.440e--03 304.69 7.437e-02

805.93 8.683e--02 608.57 3.492e--01 595.82 1.753e+00 607.42 1.589e-01

609.92 3.353e+00 611.20 3.151e+00 606.46 3.901e+00 617.48 2.155e+00

Percent differences were computed between the SSID mass and stiff-
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Table 6.23: Estimated Natural Frequencies -- 16-DOF TAMs

SSID Guyan IRS C-B

Freq. Percent Freq. Percent Freq. Percent Freq. Percent

(Hz) Error (Hz) Error (Hz) Error (Hz) Error
1.1507 4.948e-01 1.1564 1.864e--06 1.1564 3.904e-08 1.1564 1.242e--07

6.0628 2.430e--02 6.0643 7.634e--05 6.0642 1.108e-09 6.0642 5.057e--06

10.807 2.165e--01 10.783 3.467e--01 10.783 7.736e-10 10.783 2.255e--04

18.115 6.439e--02 18.127 2.036e--03 18.127 1.557e-09 18.127 1.569e--03

109.49 1.539e--03 109.50 8.567e--03 109.49 5.435e-06 109.49 1.934e-03

127.15 7.669e-03 127.27 1.026e--01 127.14 1.943e--04 127.27 1.{D6e-01

137.82 2.866e-03 137.83 7.427e-03 137.82 6.314e-07 137.83 3.774e-03

156.86 5.341e--03 156.91 2.329e--02 156.87 2.836e--05 156.88 5.222e-03

297.61 1.796e-_2 299.12 4.909e-01 297.75 3.140e--02 299.38 5.779e--01

304.41 1.745e--02 304.53 2.095e-02 304.47 6.180e-06 304.51 1.448e-02

606.24 3.595e-02 604.31 3.535e--01 595.50 1.807e-{-00 606.61 2.544e-02

626.89 6.648e-01 607.01 3.814eq-00 606.43 3.906e-{-00 617.20 2.200e-{-00

1189.4 8.538e-02 1212.4 1.848e%00 1133.1 4.816e-{-00 1189.5 7.938e--02

1192.3 8.92"2e-{}2 1214.1 1.738e-t-00 1190.8 2.093e-01 1191.1 1.9lie--01

2017.0 5.990e-01 2227.5 9.774e..{-00 1752.9 1.361e-{-01 2029.3 7.551e-03

2017.6 6.686e-01 2228.7 9.721e-t-00 2052.1 1.026eq-00 2035.0 1.865e--01

ness matrices and those of the other TAMs. Figures 6.31 and 6.32 are repre-

sentative results from the different comparisons. The only difference is that

for the 10-DOF models, the percent differences are slightly smaller and for the

16-DOF models, the differences are slightly larger. The main point is that the

mass and stiffness matrices of the various TAM models are noticeably differ-

ent. They do, however, yield essentially the same natural frequencies and result

in the same estimated frequency response functions. Berman points out that

multiple solutions of the same model can exist and have significantly different

terms in the system matrices [67]. He shows that the stiffness matrix can be

written in terms of the modes of the system and that if not all of the modes

of the system are included, the estimated stiffness matrix will not be the same

as the original stiffness matrix, but will still be representative of the system's
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stiffnessovera specifiedfrequencyrange. This leadsto the conclusionthat, in

test situations, it is impossibleto identify a unique mass and stiffness matrices.

However, the identified matrices still represent the dynamic characteristics of

the original structure.

Since the SSID algorithm identifies reduced-order mass and stiffness

matrices of the physical system, all the information associated with a Craig-

Bampton model is available, including information about the constraint modes.

The SSID reduced-order models were put into the Craig-Bampton format and

then compared to the corresponding Craig-Bampton analytical models gener-

ated from the 52-DOF FEM. Tables 6.24 through 6.26 compare the eigenvalues

of the fixed-interface normal modes of the Craig-Bampton models to those ob-

tained from the SSID-identified models in Craig-Bampton format. The data

associated with the constraint modes is compared by examining the appropriate

partition of the stiffness matrices and is shown in Figures 6.33 through 6.35.

As indicated by the results, the SSID-identified models represent the fixed-

interface and constraint-mode information very well.
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Table 6.24: Comparison of the Eigenvaluesof the Fixed-Interface Normal

Modes for the 10-DOF Model

C-B SSID

Ar Ar Percent

(rad/sec 2) (rad/sec 2) Difference

6.9895e+03 6.9753e+03 2.039e-01

2.4449e+04 2.4535e+04 3.511e-01

3.3205e+05 3.3086e+05 3.602e-01

3.5364e+05 3.5389e+05 7.031e-02

6.9749e+05 6.9720e+05 4.111e-02

2.6411e+06 2.6397e+06 5.427e-02

2.6885e+06 2.6608e+06 1.033e+00

Table 6.25: Comparison of the Eigenvalues of the Fixed-Interface Normal

Modes for the 12-DOF Model

C-B SSID

Ar Ar Percent

(rad/sec 2) (rad/sec 2) Difference

6.9895e+03 6.9213e+03 9.754e-01

2.4449e+04 2.4325e+04 5.092e-01

3.3205e+05 3.2567e+05 1.923e+00

3.5364e+05 3.5314e+05 1.393e-01

6.9749e+05 6.9726e+05 3.244e-02

2.6411e+06 2.5138e+06 4.812e+00

2.6885e+06 2.6744e+06 5.237e--01

1.2978e+07 9.6505e+06 2.564e+01

1.4456e+07 1.3020e+07 9.937e+00
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Table 6.26: Comparison of the Eigenvalues of the Fixed-Interface Normal

Modes for the 16-DOF Model

C-B SSID

A_ A_ Percent

(rad/sec _) (rad/sec 2) Difference

6.9895e+03 7.0152e+03 3.682e-01

2.4449e+04 2.5629e+04 4.825e+00

3.3205e+05 3.3724e+05 1.560e+00

3.5364e+05 3.5690e+05 9.217e--01

6.9749e+05 6.9884e+05 1.944e-01

2.6411e+06 2.6201e+06 7.957e--01

2.6885e+06 2.6923e+06 1.412e--01

1.2978e+07 1.2986e+07 6.287e-02

1.4456e+07 1.3386e+07 7.404e+00

5.3240e+07 5.3379e+07 2.603e-01

5.3430e+07 5.4037e+07 1.138e+01

1.5448e+08 1.4891e+08 3.608e+00

1.5476e+08 1.4980e+08 3.204e+00

6.6 SSID Implementation with Reaction Forces Included

This section presents simulations when interface reaction forces were

included in data used in the identification of a full-order model of the substruc-

ture. In this simulation, reaction forces where measured at all three interface

degrees of freedom. At each interface degree of freedom, a 9-DOF test stand was

attached to the substructure, resulting in a 79 degree of freedom substructure-

test stand assembly. The resulting coupled model is statically determinate.

Two independent excitation forces, located at nodes 11 and 16, where used in

the identification of the substructure.

The original 52-DOF model was first reduced to the 16 Z-translational
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degreesof freedom via Guyan reduction, and the resulting model was con-

sidered to be the "true" substructure. The same was done for the coupled

79-DOF substructure-test stand assembly, resulting in a 25-DOF model. Ta-

ble 6.27 lists the natural frequencies of the substructure-test stand assembly

and of the substructure alone. The dynamic response of the coupled system

is significantly different from that of the substructure alone. Note that lowest

natural frequency of the coupled system is significantly higher than that of the

substructure alone. Figure 6.36 compares the response at the same degree of

freedom for the substructure-test stand assembly (B structure) to that of the

substructure alone (A structure). Rayleigh damping was used instead of modal

damping to insure that there was no unwanted damping coupling between the

substructure and the test stand.

A frequency spectrum of 1-1000 Hz with 512 equally spaced frequency

lines was used for the identification. The results of the simulation are shown in

Figures 6.37 through 6.41. The results show that, with noise-free data, the SSID

algorithm was able to successfully identify the substructure from the coupled-

system data. The system matrices were all identified to less than 0.03%, and

the predicted response matches the original response very well. The estimated

undamped natural frequencies and damping factors were all identified to within

0.01%. Note that the highest four frequencies were successfully identified even

though they are well above the range of the FRF data used in the identification.

Simulations of the full-order model with the reaction forces included

were also attempted using noisy data. However, to date none has been suc-

cessful. One possible mason is the way the noise was applied and the way the
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Table 6.27: Undamped Natural Frequencies of the Coupled System and of the

Substructure Alone

B Substructure A Substructure

Number Frequency Number Frequency

(Hz) (Hz)

1 13.304 1 1.1564

2 24.775 2 6.0643

3 90.682 3 10.783

4 93.526 4 18.127

5 132.47 5 109.50

6 253.12 6 127.27

7 254.95 7 137.83

8 539.25 8 156.91

9 541.59 9 299.12

10 769.29 10 304.53

11 782.15 11 604.31

12 1223.4 12 607.01

13 1224.6 13 1212.4

14 1277.3 14 1214.1

15 1415.2 15 2227.5

16 1416.0 16 2228.7

17 1561.1

18 2230.1

19 2231.6

20 4080.2

21 4080.3

22 4081.4

23 6118.4

24 6118.4

25 6118.8
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reaction force wascomputed. Recall that the noise is applied such that it is

proportional to the magnitude of the acceleranceFRF. For the coupled sys-

tem, the accelerationresponseat low frequenciesis very small, while at high

frequenciesit is severalordersof magnitudelarger. The opposite is true for the

displacementresponse,and the reaction force wascomputed asthe difference

betweenthe displacementof the substructure-test stand interface DOFs mul-

tiplied by the couplingreaction-springconstant. Evenafter averaging,the low

frequencyaccelerationresponseand the high frequencydisplacementresponse,

and thus the measuredreaction force,arestill quite corrupted by the noiseand

these responsesare believedto be very important in thesesimulations where

the reaction forcesare included. This indicates that very accurate measure-

ment of the reaction forceswill be requiredfor use in the SSID algorithm. An

exampleof a "measured"acceleranceFRF of the coupledsystem is shown in

Figure 6.42.

The measuredreaction force FRFs due to the force at node 11 that

were usedin the identification of the full-order, noise-freesimulation are pre°

sentedin Figure 6.43. Note the low responseat high frequenciesfor the in-

terface forcesat nodes4 and 18. To alleviate the problems relating to the

reaction forces,severaldifferent ideas,suchasvarying the stiffnessof the inter-

face springs, were attempted. Simulations using mass-loadedinterfaces were

also attempted to increasethe magnitude of the measuredreaction force at

higher frequencies,but none hasproved successful.

Additional simulations have been attempted to identify a reduced-

order model with the reaction forces included. At this time, no successful
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identification of the '_payload"usedin the present study has beenmade,and

this is still an active areaof research.Successfulreduced-order-modelresults

have been obtained with the reaction forces included for lumped-parameter

models;thesecan be found in Reference[63].
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Figure 6.33: Comparison of the Constraint-Mode Partition of the C-B Stiffness
Matrix for the 10-DOF Model

Figure 6.34: Comparison of the Constraint-Mode Partition of the C-B Stiffness

Matrix for the 12-DOF Model
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Figure 6.35: Comparisonof the Constraint-ModePartition of the C-B Stiffness
Matrix for the 16-DOFModel
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Chapter 7

Conclusions and Recommendations

The purpose of this investigation was to examine the performance of

a new structural identification algorithm, the Substructure System Identifica-

tion algorithm, using numerical simulations for a moderate size finite element

model. The algorithm successfully identified the substructure when active ex-

citation was used at all the interface degrees of freedom and also for the case

when reaction forces where measured at all the interface locations. The ef-

fects of spatial and frequency truncation were studied and it was found that

the algorithm is capable of identifying valid reduced-order structural models.

Simulations were also performed using data containing noise and it was shown

that the algorithm is robust enough to handle such data.

A technique referred to as band processing was presented and shown

to successfully identify structural models from noisy frequency data having a

broad bandwidth. Thus, the SSID algorithm can be used as both a narrow-band

and broad-band frequency-domain identification procedure. Pseudo degrees of

freedom were examined as a way to expand the model size when there are more

modes present in the data than there are output sensors. The model employing

pseudo degrees of freedom was able to identify some of the additional modes

when the original model could not.

The identified system matrices from the SSID algorithm were also
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comparedto other test-analysismodelsandit wasfound that the SSIDreduced-

order modelsrepresentthe dynamiccharacteristicsof the structure aswell as,if

not better than, the other test-analysismodels. In addition, it wasshownthat

the SSID reduced-ordermodels provide the information necessaryto obtain

the fixed-interfacemodaldata associatedwith the Craig-Bamptonsubstructure

model and the data associatedwith the constraint modesas well.

The following recommendations are made regarding the SSID algo-

rithm and future work in this area:

• Remove the dependence on the scaling of the fixed-interface normal modes

and determine an absolute measure that can be used to select the fixed-

interface normal modes that contribute most to the target modes for the

Craig-Bampton reduced-order models.

• Employ additional simulations to examine the identification of reduced-

order models when the measured the reaction forces are included. Also,

research is needed in the area of the measurement of reaction forces to

determine acceptable reaction force levels.

• Investigate additional modal quality indicators for use in band process-

ing and with models employing pseudo degrees of freedom to distinguish

between structural and computational modes.

• Explore the band processing technique further, such as determining the

optimal bandwidth and frequency resolution for different model sizes and

modal densities. In addition, the SSID algorithm using the band process-

ing technique should be implemented on a parallel-computing machine.
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• Further study the areaof proper modelorder determination for the SSID

algorithm. The necessarystepsneededto usepseudodegreesof freedom

to increasethe model order in the secondstageof the SSID algorithm

shouldbedetermined.Also, examinethe casewhen therearemuch fewer

modes than sensors. In this case,the resulting SSID model will not be

a minimal-order model, but will be larger and the order of the model

shouldsomehowbe reduced.



Appendix A

MATLAB@ Source Code

% Set Parameters:
% ne -- No. Excitation Frequencies
% nx = No. of DOF of Substructure Model

% nf-- No. of Active Forces
% nr - No. of Reactions
% ns = No. of States
% nb - No. of DOF of Substructure and Test Stand

% nsample -- No. of samples of excitation source
%
clear rand('seed',0);
%
na--size(KA,1);
% Compute the mass-normalized eigenvectors

hia,eiga]=massnorm(KA,MA);
eqa=sqrt (eiga) / (2*pi);

% Compute the modal damping matrix

A,zeta.a] =damping (MA,KA,ones (na, 1),.02);

% Forced DOF: 10, 22, and 50
% Reaction DOF: NONE

fdof=[10 22 50]; nf=3; nr=-0; nd=nf+nr;
%
% "Preserve" these modes of the "A" Structure

modes=[l:10,17,18,21,22,29,30]; %16 DOF Model
%modes= [l :10,17,18] ; %12 DOF Model
_modes= [1:10]; %10 DOF Model
% DOF to RETAIN from the Original Model
rdof-eidv(phia (:,modes), [1:hal',length(modes));
% DOF to OMITT from the Original Model
odof=omitdof(na,rdof);
% Retained Interior DOF of the Original Model and the Forced DOF
% of the Reduced Model

,ridof, frdof]=keptdof(na,odof, fdof(l:nf),fdof(nf+l:nd));

% Size of the substructure to identify
nx--length(rdof); ns=2.nx;
%
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% Input Test Frequencies
ne----512;deltaf=l; fmin=l.0; fmax--300;
Freq=linspace(fmin,fmax,ne);W=Freq,2.pi; W2=W. ^2;
%
% Noise parameters
nsample=40; magnoise=2.0/100.; phnoise--2.pi/180.; toll--le-10; tol2---le-10;
%
% Initialize

DA=zeros (na, (nf+nr)); DAr=zeros(nx, (nf+nr));
for n--l:nd

k=fdof(n);
DA(k,n)=l;
k=frdof(n);
DAr(k,n)=l;

end
%
% Form Frequency-Response Vectors (Direct Solution)

0AB,P]=frfdirect(W,MA,CA,KA,DA);

% Simulate Noise

oABn,Pn]=applynoise(AB,P, nsample,magnoise,phnoise);

% Remove Response Vectors Corresponding to "A" Structure
AA=ABn(rdof,:);
%
% Form Velocity and Displacement FRFs

_oAA,VA,XA,Hff] =calvxf(AA,Pn,Freq); nrf=l;

% LHS of Equation 3.7

VXFA=[VA;XA;-Hff];
%
% Form Real/Imaginary Partitions
% Pal-IS of Equation 3.7

AA2=[real(iA) imag(Ai)];
VXFA2=[real(VXFA) imag(VXFi)];
%
% Step 1 - Identification of M ^-IK and M ^-IC and the resulting eigensolution
% Solve Equation 3.7

%CKDAE2=-AA2/VXFA2;

KDAE2,V1,S1]=tls(VXFA2',-AA2',21,toll,to12,1); CKDAE2=CKDAE2';

% Complex Eigensolution Based on Estimated Minv.C and Minv.K
CHA=CKDAE2(:,I:nx);
KHA=CKDAE2(:,nx+I:ns);
DHA=CKDAE2(:,ns+I:ns+nd);
% Equation 3.11
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ASAHATE=[CHA eye(nx);eye(nx)zeros(nx)];
BSAHATE=[KHA zeros(nx); zeros(nx)-eye(nx)];
% Equation 3.12 Lambda=LambdaHat
CTHETAE,CLAMAE]=eig(-BSAHATE,ASAHATE);
CTHETAE,CLAMAE]---eigensorti(CTHETAE,diag(CLAMAE));

zetass=-real (CLAMAE)./abs(CLAMAE);
omegss--imag(CLAMAE)./sqrt (1-zetass. ^ 2);
%
% Step 2-Identification of M, C, and K
%
% Estimation of Inverse Generalized Modal Parameters
%
CTX=CTHETAE(I:nx,:);
%
E---zeros (nf, ne, nx,ns); R--zeros (ne,ns); Y-zeros (nf, ne, nx, 1);
for k=l:ne

for r=-l:ns

% Equation 3.19
R(k,r)---W2(k)/0,W(k)-CLAMAE(r));

end
end
%
offset----ne,nx;
for n=l:nf

nof=n,offset-offset;
for k=l:ne

kk=nf, k-(nf-n);
DF=DA(:,n)+DA(:,nf+l:nd),Hrf(:,kk);
for r=-l:ns

% Equation 3.24

E((1 +(k-1 )*nx) +nor: (k,nx) +nof, r)=R(k,r), CTX (:,r),CTX (:,r).', DF;
end
for r=l :nx

% LHS of Equation 3.23
Y(nx, (k- 1) +r+nof) =AA(r,kk);

end
end

end
%
% Inverse Generalized Mass Estimation

% Solving Equation 3.23

GASAIE=E\Y;
%
% Estimated Generalized Modal Parameter Vector - ar
GASAE=I./GASAIE;
%
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% Estimated Generalized Modal Parameter Vector- br
% Solving Equation 3.25
GBSAE---CLAMAE..GASAE;
%
% Forming (Thetahat)^-1
CTHI=inv(CTHETAE);
%
% Estimated State-variable A Matrix
% Equation 3.26a
ASAE=CTHI.',diag(GASAE).CTHI;
%
% Estimated State-variable B Matrix
% Equation 3.26b
BSAE=CTHI.'.diag(GBSAE).CTHI;
%
% Extract System Matrices
Ml=real(ASAE(l:nx,nx+l:ns));
M2=real(ASAE(nx÷ hns,1 :nx));
M3=-real (BSA E (nx+ 1:ns,nx+ 1:ns));
M=M3;
C--real(ASAE(hnx,l:nx));
K=real(BSAE(1 :nx, 1:nx));
C2--damping(M,K,zetass(l:nx));
[phie,eige]=eig(K,M);
[phie,eige]=eigensortr(phie,diag(eige)); freqe=sqrt (eige) / (2.pi);

function [Haf, Hvf, Hxf, Hff]=calvxf(AA,P, Freq)
% [Haf, Hvf, Hff]=calvxf(AA,P, Freq)
% AA = Accelerations of the "A" structure
% P = applied forces
% Haf-- Accelerance Frequency Response Function

%Hxf= 2)
%Hff
ne=length(Freq); nf=size(P,1); W--Freq.2.pi; W2--W. ^ 2;
naf=zeros(size(AA)); Hvf=zeros(size(AA));
Hxf=zeros(size(AA) ); Htt=zeros(size(P ));
%
for k--l:ne

nk2=nf.k;
nkl=nk2-(nf-1);

%
% Form Autospectrum

Pstar=conj (P (:,nk l:nk2));
Gff=P(:,nkl:nk2),Pstar;
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Gffi--inv(Gff);

Hff(:,nkl:nk2)=Gff*Gffi;
%
% Form [Ha_e]/(jw)-Mobility

WB=eye(nf)*(1./(j*W(k)));
Hvf(:,nkl:nk2)=(AA(:,nkl:nk2)*WB)*Pstar*Gffi;

%
% Form [Haf]/(-w^2)-Receptance

W2B=-eye(nf), 1./W2 (k);
I-Ixf(:,nkl :nk2)=(AA(:,nkl :nk2),W2B),Pstar, GfIi;

%
% Form Haf-Accelerance

Haf(:,nkl:nk2)=AA(:,nkl:nk2)*Pstar*Gffi;
end
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function [ABn,Pn]=applynoise(AB,P,nsample,magnoise,phnoise)
% [ABn,Pn]=appIynoise (AB,P, nsample,magnoise,phnoise)
nx--size(AB,1);
nf--size(P,1);
ne--size(AB,2)/nf;
ABn--zeros(sizeC AB));
Pn=zeros(size(P));
for k=l:nx

for kk--l:nf

ABn(k,kk:nf:nf, ne)=addnoise(AB (k,kk:nf:nf, ne),nsample,magnoise,phnoise);
end

end
for k=l:nf

Pn(k,k:nf:nf, ne) =addnoise(P (k,k:nf:nf, ne),nsample,magnoise,phnoise);
end

function XN=addnoise(X,Navg,magnoise,phnoise)
% XN=addnoise(X,Navg,magnoise,phnoise)
% XN -- output signal with the noise added
% X = the original signal
% Navg = the number of avergages
% magnoise = the noise on the magnitude
% phnoise = the noise on the phase

nq=sue(X);
eal=real(X);

Ximag=imag(X);
% Compute magnitude and phase of base signal
Xmag=sqrt( (Xreal).^2 + (Ximag). ^2 );

Xphase=atan2 (Ximag,Xreal);
% RMS value of base signal
_p s=norm(Xmag)/length (Xmag);

ercentage of RMS value of base signal
noisescale=Hrms,magnoise;
XN=zeros(size(X));
I=ones(size(Xmag));
for k= 1 :Navg

Nmag=zeros (size(Xmag));
Nphase=zeros(size(Xphase));

% Calculate and add noise for magnitude

Rl=rand(nx,nf);
R2=rand(nx,nf)_
noiseM=(I-2,R1);
noiseM=noiseM-mean (noiseM);
Nrms=norm(noiseM)/length(noiseM);
SNmag=noisescale/Nrms;
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Nmag=SNmag,noiseM;
% Calculate and noise for phase

noisePh=(I-2,R2);
noisePh=noisePh-mean (noisePh);

Nphase--phnoise,noisePh;
%

XNmag--Xmag+Nmag;
XNph=Xphase+Nphase;

%
XNreal=XNmag.*cos(XNph);

XNimag=XNmag.*sin (XNph);
XNnk=XNreal+j,XNimag;
XN=XN+XNnk;

end

XN=XN/Navg;
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fimction [X,V,S]=tls(A,B ,rank,toll ,tol2,comp)
% Solvesthe Total Least Squaresproblem AX=B
% [X,V,S]--tls(A,B,rank,toll,tol2,comp)
% A The data matrix (mxn)
% B The observationmatrix (nxd)
% rank The rank of [A;B], if set to zero it will be computed
% toll Two possibilitiesdependingon the valueof comp
% Specifiesthe toleranceto be usedwhen checkingfor multiplicity of
% singular valesOR the estimatedstandard deviation of the error on
% eachelementof the matrix C
% tol2 Toleranceusedto checkfor the singularity of the upper triangular
% matrix F, seedescription
% comp Specifieswhether rank and/or toll is to be computedby the routine
% comp-- 1 rank is to be computed
%
%
%
%x
%v
%S

----2 toll is to be computed (stdv is input by the user)
-- 3 neither toll nor rank is computed

-- 4 both rank and toll are to be computed (stdv is input)
The solution to the TLS problem, the leading nxd part of the array
The right singular vectors of [A;B]
The singular values of C in descending order

% Reference S.Van Huffel (ESAT Laboratory, KU Leuven).
crank--I; ctol--1;
ff comp==3

crank=0;
ctol=0;

else

ff comp==l
ctol--0;

end

ff comp==2
crank=0;

end
end

toll--max([toll eps]); tol2=max([tol2 eps]);
[m,n]=size(A); l=size(B,2); nl--n+l;

X=zeros(n,1); k=max([m nl]); p=min([m n]);

_U0,S,V]=svd([i,n],0); S=diag(S);

% Step 2: Compute the rank approximation of [A B]
smax=toll;
% Compute smax if requested
if etol==l

smax=sqrt (2.,k),smmx;
end

smax2=smax ^ 2;
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°7o Compute the rank if requested
if crank==l

rank=p;
while (rank>O) & (S(rank)<=smax)

ifrank > 0

if S(rank) <= smax
rank=rank-l;

end
end

end
end
% Adjust the rank if S(rank) has multiplicity > 1

flag=0;
while flag==0

rl=rank+l;
while (rank>0) & ((S(rank)^2-S(rl)^2)<=smax2)

if rank > 0

if (S(rank) ^ 2-S(rl) ^ 2) <=smax2
rank=rank-l;
'Rank lowered because singular value had multiplicity > 1'

end
end

end

rl=rank+l;
%
% Compute the Householder matrix Q and matrices F and Y
%

nil=max(In rl])+l;
zero=O;

i=nl;

while(('zero)a (i>=nn))
if ((-zero) & (i>=nll))

k=i-rank;

WRK=V(i,rl:rl +k-l); 2
[WRK,temp,zero]=housh(WRK,k,tol );
if (" zero)

V=tr2(V,WRK,temp,l,i,rank,k);
end

i=i-1;
end

end
%

nl=n+l;
if ((zero) I (abs(V(nl,nl))<--tol2))

rank=rank-l;
'Rank lowered because singular upper triangular matrix F'
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flag=O;
else

flag=l;
end

end

for j=2:l
nj=n+j;
temp=V(nj,nj);
jl=j-1;
for i=l:n

X(ij)=-(V(i,nj)+dot(V(nl:nl+jl-l,nj),X(i,l:jl)))/temp;
end

end
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function [u,s,zero]= housh (u j ,heps)
%HOUSH Construct a householder transformation H---I-s*UU'.
%
% [U,S,ZERO]--- HOUSH(U,J,Heps)
% Constructs a Householder transformation H=I-s.UU' that 'mirrors' a

% vector u to the Jth unit vector. If NORM(U)<Eps then Zero=l [True]
%
% Reference: Adapted from "Computation of Zeros of Linear Multivariable
% Systems", A. Emami-Naeini, and P. Van Dooren; Automatica
% Vol. 18, No. 4, pp. 415-430, 1982.

s = sum(u.,u);
alfa ----sqrt (s);
if (alfa<=heps), zero=l; return, end
zero=O;

dum ----uO);
if dum>O, alfa=-alfa; end
u0) = u0)-alfa;
s- 1 ./(s-alfa.dum);
% Make u a column vector.

u = u(:);

function A=tr2(A,U,s,il,i2j 1,j2)
inprod=0.0;
for j=l:j2

inprod-inprod+U (j).A (ij 1 +j);
end

y=inprod.s;
for j=l :j2

A(ij1 +j) =A(i,j 1 +j)-VO)*y;
end

end
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